Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 11(5)2021 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-33946726

RESUMO

The additive manufacturing of low elastic modulus alloys that have a certain level of porosity for biomedical needs is a growing area of research. Here, we show the results of manufacturing of porous and dense samples by a laser powder bed fusion (LPBF) of Ti-Nb alloy, using two distinctive fusion strategies. The nanostructured Ti-Nb alloy powders were produced by mechanical alloying and have a nanostructured state with nanosized grains up to 90 nm. The manufactured porous samples have pronounced open porosity and advanced roughness, contrary to dense samples with a relatively smooth surface profile. The structure of both types of samples after LPBF is formed by uniaxial grains having micro- and nanosized features. The inner structure of the porous samples is comprised of an open interconnected system of pores. The volume fraction of isolated porosity is 2 vol. % and the total porosity is 20 vol. %. Cell viability was assessed in vitro for 3 and 7 days using the MG63 cell line. With longer culture periods, cells showed an increased cell density over the entire surface of a porous Ti-Nb sample. Both types of samples are not cytotoxic and could be used for further in vivo studies.

2.
Acta Biomater ; 116: 246-258, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-32871281

RESUMO

Vascular grafts with a diameter of less than 6 mm are made from a variety of materials and techniques to provide alternatives to autologous vascular grafts. Decellularized materials have been proposed as a possible approach to create extracellular matrix (ECM) vascular prostheses as they are naturally derived and inherently support various cell functions. However, these desirable graft characteristics may be limited by alterations of the ECM during the decellularization process leading to decreased biomechanical properties and hemocompatibility. In this study, arteries from the human placenta chorion were decellularized using two distinct detergents (Triton X-100 or SDS), which differently affect ECM ultrastructure. To overcome biomechanical strength loss and collagen fiber exposure after decellularization, riboflavin-mediated UV (RUV) crosslinking was used to uniformly crosslink the collagenous ECM of the grafts. Graft characteristics and biocompatibility with and without RUV crosslinking were studied in vitro and in vivo. RUV-crosslinked ECM grafts showed significantly improved mechanical strength and smoothening of the luminal graft surfaces. Cell seeding using human endothelial cells revealed no cytotoxic effects of the RUV treatment. Short-term aortic implants in rats showed cell migration and differentiation of host cells. Functional graft remodeling was evident in all grafts. Thus, RUV crosslinking is a preferable tool to improve graft characteristics of decellularized matrix conduits.


Assuntos
Prótese Vascular , Células Endoteliais , Animais , Artérias , Matriz Extracelular , Humanos , Ratos , Riboflavina/farmacologia , Engenharia Tecidual
3.
Am J Sports Med ; 48(9): 2151-2160, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32543880

RESUMO

BACKGROUND: Bone mineral density at the humeral head is reduced in patients with chronic rotator cuff tears. Bone loss in the humeral head is associated with repair failure after rotator cuff reconstruction. Bisphosphonates (eg, zoledronic acid) increase bone mineral density. HYPOTHESIS: Zoledronic acid improves bone mineral density of the humeral head and biomechanical properties of the enthesis after reconstruction of chronic rotator cuff tears in rats. STUDY DESIGN: Controlled laboratory study. METHODS: A total of 32 male Sprague-Dawley rats underwent unilateral (left) supraspinatus tenotomy with delayed transosseous rotator cuff reconstruction after 3 weeks. All rats were sacrificed 8 weeks after rotator cuff repair. Animals were randomly assigned to 1 of 2 groups. At 1 day after rotator cuff reconstruction, the intervention group was treated with a single subcutaneous dose of zoledronic acid at 100 µg/kg bodyweight, and the control group received 1 mL of subcutaneous saline solution. In 12 animals of each group, micro-computed tomography scans of both shoulders were performed as well as biomechanical testing of the supraspinatus enthesis of both sides. In 4 animals of each group, histological analyses were conducted. RESULTS: In the intervention group, bone volume fraction (bone volume/total volume [BV/TV]) of the operated side was higher at the lateral humeral head (P = .005) and the medial humeral head (P = .010) compared with the control group. Trabecular number on the operated side was higher at the lateral humeral head (P = .004) and the medial humeral head (P = .001) in the intervention group. Maximum load to failure rates on the operated side were higher in the intervention group (P < .001). Cortical thickness positively correlated with higher maximum load to failure rates in the intervention group (r = 0.69; P = .026). Histological assessment revealed increased bone formation in the intervention group. CONCLUSION: Single-dose therapy of zoledronic acid provided an improvement of bone microarchitecture at the humeral head as well as an increase of maximum load to failure rates after transosseous reconstruction of chronic rotator cuff lesions in rats. CLINICAL RELEVANCE: Zoledronic acid improves bone microarchitecture as well as biomechanical properties after reconstruction of chronic rotator cuff tears in rodents. These results need to be verified in clinical investigations.


Assuntos
Densidade Óssea , Lesões do Manguito Rotador , Manguito Rotador , Ácido Zoledrônico/uso terapêutico , Animais , Fenômenos Biomecânicos , Masculino , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley , Manguito Rotador/cirurgia , Lesões do Manguito Rotador/cirurgia , Cicatrização , Microtomografia por Raio-X
4.
Artigo em Inglês | MEDLINE | ID: mdl-32426347

RESUMO

Biomechanical cues such as shear stress, stretching, compression, and matrix elasticity are vital in the establishment of next generation physiological in vitro tissue models. Matrix elasticity, for instance, is known to guide stem cell differentiation, influence healing processes and modulate extracellular matrix (ECM) deposition needed for tissue development and maintenance. To better understand the biomechanical effect of matrix elasticity on the formation of articular cartilage analogs in vitro, this study aims at assessing the redifferentiation capacity of primary human chondrocytes in three different hydrogel matrices of predefined matrix elasticities. The hydrogel elasticities were chosen to represent a broad spectrum of tissue stiffness ranging from very soft tissues with a Young's modulus of 1 kPa up to elasticities of 30 kPa, representative of the perichondral-space. In addition, the interplay of matrix elasticity and transforming growth factor beta-3 (TGF-ß3) on the redifferentiation of primary human articular chondrocytes was studied by analyzing both qualitative (viability, morphology, histology) and quantitative (RT-qPCR, sGAG, DNA) parameters, crucial to the chondrotypic phenotype. Results show that fibrin hydrogels of 30 kPa Young's modulus best guide chondrocyte redifferentiation resulting in a native-like morphology as well as induces the synthesis of physiologic ECM constituents such as glycosaminoglycans (sGAG) and collagen type II. This comprehensive study sheds light onto the mechanobiological impact of matrix elasticity on formation and maintenance of articular cartilage and thus represents a major step toward meeting the need for advanced in vitro tissue models to study both re- and degeneration of articular cartilage.

5.
J Mater Chem B ; 7(42): 6592-6603, 2019 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-31589221

RESUMO

Management of infected wounds is one of the most costly procedures in the health care sector. Burn wounds are of significant importance due to the high infection risk that can possibly lead to severe consequences such as sepsis. Because antibiotic wound treatments have caused increasing antibiotic resistance in bacteria, there is currently a strong need for alternative strategies. Therefore, we developed new antimicrobial wound dressings consisting of pH-responsive human serum albumin/silk fibroin nanocapsules immobilized onto cotton/polyethylene terephthalate (PET) blends loaded with eugenol, which is an antimicrobial phenylpropanoid. Ultrasound-assisted production of eugenol-loaded nanocapsules resulted in particle sizes (hydrodynamic radii) between 319.73 ± 17.50 and 574.00 ± 92.76 nm and zeta potentials ranging from -10.39 ± 1.99 mV to -12.11 ± 0.59 mV. Because recent discoveries have indicated that the sweat glands contribute to wound reepithelialisation, release studies of eugenol were conducted in different artificial sweat formulas that varied in pH. Formulations containing 10% silk fibroin with lower degradation degree exhibited the highest release of 41% at pH 6.0. After immobilization, the functionalized cotton/PET blends were able to inhibit 81% of Staphylococcus aureus and 33% of Escherichia coli growth. Particle uniformity, silk fibroin concentration, and high surface-area-to-volume ratio of the produced nanocapsules were identified as the contributing factors leading to high antimicrobial activities against both strains. Therefore, the production of antimicrobial textiles using nanocapsules loaded with an active natural compound that will not contribute to antibiotic resistance is seen as a potential future alternative to commercially available antiseptic wound dressings.


Assuntos
Antibacterianos/farmacologia , Fibra de Algodão , Eugenol/farmacologia , Nanocápsulas/química , Polietilenotereftalatos/química , Materiais Inteligentes/farmacologia , Antibacterianos/química , Antibacterianos/toxicidade , Bandagens , Hidrolases de Éster Carboxílico/química , Linhagem Celular , Celulase/química , Fibra de Algodão/toxicidade , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Escherichia coli/efeitos dos fármacos , Eugenol/química , Eugenol/toxicidade , Fibroínas/química , Fibroínas/toxicidade , Humanos , Nanocápsulas/toxicidade , Polietilenotereftalatos/toxicidade , Albumina Sérica Humana/química , Albumina Sérica Humana/toxicidade , Materiais Inteligentes/química , Materiais Inteligentes/toxicidade , Staphylococcus aureus/efeitos dos fármacos
6.
Am J Sports Med ; 47(9): 2158-2166, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31206305

RESUMO

BACKGROUND: Characteristics of chronic rotator cuff tears include continuous loss of tendon structure as well as tendon elasticity, followed by a high failure rate after surgical reconstruction. Several studies have already shown the beneficial effect of extracorporeal shockwave therapy (ESWT) on tissue regeneration in tendon pathologies. HYPOTHESIS: ESWT improves biomechanical tendon properties as well as functional shoulder outcomes in chronic rotator cuff reconstruction in rodents. STUDY DESIGN: Controlled laboratory study. METHODS: After tendon detachment and 3 weeks of degeneration, a subsequent transosseous reattachment of the supraspinatus tendon was performed in 48 adult male Sprague-Dawley rats (n = 16 per group). Rodents were randomly assigned to 3 study groups: no ESWT/control group, intraoperative ESWT (IntraESWT), and intra- and postoperative ESWT (IntraPostESWT). Shoulder joint function, as determined by gait analysis, was assessed repeatedly during the observation period. Eight weeks after tendon reconstruction, the rats were euthanized, and biomechanical and gene expression analyses were performed. RESULTS: Macroscopically, all repairs were intact at the time of euthanasia, with no ruptures detectable. Biomechanical analyses showed significantly improved load-to-failure testing results in both ESWT groups in comparison with the control group (control, 0.629; IntraESWT, 1.102; IntraPostESWT, 0.924; IntraESWT vs control, P≤ .001; IntraPostESWT vs control, P≤ .05). Furthermore, functional gait analyses showed a significant enhancement in intensity measurements for the IntraPostESWT group in comparison with the control group (P≤ .05). Gene expression analysis revealed no significant differences among the 3 groups. CONCLUSION: Clearly improved biomechanical results were shown in the single-application and repetitive ESWT groups. Furthermore, functional evaluation showed significantly improved intensity measurements for the repetitive ESWT group. CLINICAL RELEVANCE: This study underpins a new additional treatment possibility to prevent healing failure. Improved biomechanical stability and functionality may enable faster remobilization as well as an accelerated return to work and sports activities. Furthermore, as shockwave therapy is a noninvasive, easy-to-perform, cost-effective treatment tool with no undesired side effects, this study is of high clinical relevance in orthopaedic surgery. Based on these study results, a clinical study has already been initiated to clinically confirm the improved functionality by ESWT.


Assuntos
Tratamento por Ondas de Choque Extracorpóreas , Procedimentos Ortopédicos , Lesões do Manguito Rotador/cirurgia , Animais , Fenômenos Biomecânicos , Masculino , Ratos , Ratos Sprague-Dawley , Procedimentos de Cirurgia Plástica , Manguito Rotador/cirurgia , Ombro/cirurgia , Tendões/cirurgia , Cicatrização/efeitos dos fármacos
7.
Sci Rep ; 8(1): 17010, 2018 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-30451865

RESUMO

Osteoarthritis (OA) is one of the most common causes of disability and represents a major socio-economic burden. Despite intensive research, the molecular mechanisms responsible for the initiation and progression of OA remain inconclusive. In recent years experimental findings revealed elevated levels of reactive oxygen species (ROS) as a major factor contributing to the onset and progression of OA. Hence, we designed a hydrostatic pressure bioreactor system that is capable of stimulating cartilage cell cultures with elevated ROS levels. Increased ROS levels in the media did not only lead to an inhibition of glycosaminoglycans and collagen II formation but also to a reduction of already formed glycosaminoglycans and collagen II in chondrogenic mesenchymal stem cell pellet cultures. These effects were associated with the elevated activity of matrix metalloproteinases as well as the increased expression of several inflammatory cytokines. ROS activated different signaling pathways including PI3K/Akt and MAPK/ERK which are known to be involved in OA initiation and progression. Utilizing the presented bioreactor system, an OA in vitro model based on the generation of ROS was developed that enables the further investigation of ROS effects on cartilage degradation but can also be used as a versatile tool for anti-oxidative drug testing.


Assuntos
Cartilagem Articular/patologia , Condrogênese , Pressão Hidrostática/efeitos adversos , Células-Tronco Mesenquimais/patologia , Osteoartrite/etiologia , Espécies Reativas de Oxigênio/metabolismo , Cartilagem Articular/metabolismo , Células Cultivadas , Humanos , Células-Tronco Mesenquimais/metabolismo , Osteoartrite/metabolismo , Osteoartrite/patologia , Transdução de Sinais
8.
Eur J Pharm Biopharm ; 133: 176-187, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30291964

RESUMO

Inflammation processes are associated with significant decreases in tissue or lysosomal pH from 7.4 to 4, a fact that argues for the application of pH-responsive drug delivery systems. However, for their design and optimization a full understanding of the release mechanism is crucial. In this study we investigated the pH-depending drug release mechanism and the influence of silk fibroin (SF) concentration and SF degradation degree of human serum albumin (HSA)-SF nanocapsules. Sonochemically produced nanocapsules were investigated regarding particle size, colloidal stability, protein encapsulation, thermal stability and drug loading properties. Particles of the monodisperse phase showed average hydrodynamic radii between 438 and 888 nm as measured by DLS and AFM and a zeta potential of -11.12 ±â€¯3.27 mV. Together with DSC results this indicated the successful production of stable nanocapsules. ATR-FTIR analysis demonstrated that SF had a positive effect on particle formation and stability due to induced beta-sheet formation and enhanced crosslinking. The pH-responsive release was found to depend on the SF concentration. In in-vitro release studies, HSA-SF nanocapsules composed of 50% SF showed an increased pH-responsive release for all tested model substances (Rhodamine B, Crystal Violet and Evans Blue) and methotrexate at the lowered pH of 4.5 to pH 5.4, while HSA capsules without SF did not show any pH-responsive drug release. Mechanistic studies using confocal laser scanning microscopy (CLSM) and small angle X-ray scattering (SAXS) analyses showed that increases in particle porosity and decreases in particle densities are directly linked to pH-responsive release properties. Therefore, the pH-responsive release mechanism was identified as diffusion controlled in a novel and unique approach by linking scattering results with in-vitro studies. Finally, cytotoxicity studies using the human monocytic THP-1 cell line indicated non-toxic behavior of the drug loaded nanocapsules when applied in a concentration of 62.5 µg mL-1. Based on the obtained release properties of HSA-SF nanocapsules formulations and the results of in-vitro MTT assays, formulations containing 50% SF showed the highest requirements arguing for future in vivo experiments and application in the treatment of inflammatory diseases.


Assuntos
Fibroínas/química , Nanocápsulas/química , Albumina Sérica Humana/química , Seda/química , Difusão , Composição de Medicamentos/métodos , Sistemas de Liberação de Medicamentos/métodos , Liberação Controlada de Fármacos/efeitos dos fármacos , Azul Evans/química , Violeta Genciana/química , Humanos , Concentração de Íons de Hidrogênio , Tamanho da Partícula , Rodaminas/química , Espalhamento a Baixo Ângulo , Propriedades de Superfície , Difração de Raios X/métodos
9.
Adv Exp Med Biol ; 1077: 3-17, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30357680

RESUMO

Laminins are major components of all basement membranes surrounding nerve or vascular tissues. In particular laminin-111, the prototype of the family, facilitates a large spectrum of fundamental cellular responses in all eukaryotic cells. Laminin-111 is a biomaterial frequently used in research, however it is primarily isolated from non-human origin or produced with time-intensive recombinant techniques at low yield.Here, we describe an effective method for isolating laminin-111 from human placenta, a clinical waste material, for various tissue engineering applications. By extraction with Tris-NaCl buffer combined with non-protein-denaturation ammonium sulfate precipitation and rapid tangential flow filtration steps, we could effectively isolate native laminin-111 within only 4 days. The resulting material was biochemically characterized using a combination of dot blot, SDS-PAGE, Western blot and HPLC-based amino acid analysis. Cytocompatibility studies demonstrated that the isolated laminin-111 promotes rapid and efficient adhesion of primary Schwann cells. In addition, the bioactivity of the isolated laminin-111 was demonstrated by (a) using the material as a substrate for outgrowth of NG 108-15 neuronal cell lines and (b) promoting the formation of interconnected vascular networks by GFP-expressing human umbilical vein endothelial cells.In summary, the isolation procedure of laminin-111 as described here from human placenta tissue, fulfills many demands for various tissue engineering and regenerative medicine approaches and therefore may represent a human alternative to various classically used xenogenic standard materials.


Assuntos
Laminina/metabolismo , Placenta/metabolismo , Medicina Regenerativa , Engenharia Tecidual , Linhagem Celular , Feminino , Células Endoteliais da Veia Umbilical Humana , Humanos , Laminina/isolamento & purificação , Gravidez , Células de Schwann
10.
Biomaterials ; 177: 14-26, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29885585

RESUMO

Small diameter vascular grafts from human placenta, decellularized with either Triton X-100 (Triton) or SDS and crosslinked with heparin were constructed and characterized. Graft biochemical properties, residual DNA, and protein composition were evaluated to compare the effect of the two detergents on graft matrix composition and structural alterations. Biocompatibility was tested in vitro by culturing the grafts with primary human macrophages and in vivo by subcutaneous implantation of graft conduits (n = 7 per group) into the flanks of nude rats. Subsequently, graft performance was evaluated using an aortic implantation model in Sprague Dawley rats (one month, n = 14). In situ graft imaging was performed using MRI angiography. Retrieved specimens were analyzed by electromyography, scanning electron microscopy, histology and immunohistochemistry to evaluate cell migration and the degree of functional tissue remodeling. Both decellularization methods resulted in grafts of excellent biocompatibility in vitro and in vivo, with low immunogenic potential. Proteomic data revealed removal of cytoplasmic proteins with relative enrichment of ECM proteins in decelluarized specimens of both groups. Noteworthy, LC-Mass Spectrometry analysis revealed that 16 proteins were exclusively preserved in Triton decellularized specimens in comparison to SDS-treated specimens. Aortic grafts showed high patency rates, no signs of thrombus formation, aneurysms or rupture. Conduits of both groups revealed tissue-specific cell migration indicative of functional remodeling. This study strongly suggests that decellularized allogenic grafts from the human placenta have the potential to be used as vascular replacement materials. Both detergents produced grafts with low residual immunogenicity and appropriate mechanical properties. Observed differences in graft characteristics due to preservation method had no impact on successful in vivo performance in the rodent model.


Assuntos
Artérias/química , Prótese Vascular , Matriz Extracelular/química , Placenta/irrigação sanguínea , Proteínas/análise , Alicerces Teciduais/química , Animais , Aorta/cirurgia , Fenômenos Biomecânicos , Implante de Prótese Vascular , Córion/irrigação sanguínea , Matriz Extracelular/ultraestrutura , Proteínas da Matriz Extracelular/análise , Feminino , Humanos , Masculino , Gravidez , Ratos Nus , Ratos Sprague-Dawley
11.
J Tissue Eng Regen Med ; 12(4): 1049-1061, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29096406

RESUMO

Treatment of peripheral nerve injuries has evolved over the past several decades to include the use of sophisticated new materials endowed with trophic and topographical cues that are essential for in vivo nerve fibre regeneration. In this research, we explored the use of an advanced design strategy for peripheral nerve repair, using biological and semi-synthetic hydrogels that enable controlled environmental stimuli to regenerate neurons and glial cells in a rat sciatic nerve resection model. The provisional nerve growth conduits were composed of either natural fibrin or adducts of synthetic polyethylene glycol and fibrinogen or gelatin. A photo-patterning technique was further applied to these 3D hydrogel biomaterials, in the form of laser-ablated microchannels, to provide contact guidance for unidirectional growth following sciatic nerve injury. We tested the regeneration capacity of subcritical nerve gap injuries in rats treated with photo-patterned materials and compared these with injuries treated with unpatterned hydrogels, either stiff or compliant. Among the factors tested were shear modulus, biological composition, and micropatterning of the materials. The microchannel guidance patterns, combined with appropriately matched degradation and stiffness properties of the material, proved most essential for the uniform tissue propagation during the nerve regeneration process.


Assuntos
Regeneração Tecidual Guiada , Hidrogéis , Lasers , Regeneração Nervosa , Nervo Isquiático , Animais , Hidrogéis/química , Hidrogéis/farmacologia , Masculino , Ratos , Ratos Endogâmicos Lew , Nervo Isquiático/lesões , Nervo Isquiático/fisiologia
12.
J Biomed Mater Res A ; 105(3): 687-696, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27756117

RESUMO

The control of bleeding is one of the most important interventions after a traumatic injury. Hemostatic devices delivering blood clotting accelerating agents such as fibrinogen are increasingly used due to their efficacy and their ease of application. In the present study, we describe a method to incorporate the coagulant supplements fibrinogen and thrombin in silk protein sponges by mixing the coagulants with an aqueous silk solution, followed by molding, freeze-drying, and water annealing. In this combination system, we demonstrate the delivery of fibrinogen while maintaining its hemostatic potential. Concentration ratios of silk to fibrinogen of 1.0%/2.8%, 2.3%/1.5%, and 3.0%/0.8% were used. The thrombin-induced fibrin polymeric network filled the space in and next to the silk spongy structure but also remained interconnected to the silk, providing an intact network. The mechanical characterization of the fibrinogen-releasing silk sponges before and after the induction of the fibrinogen polymerization demonstrated that the fibrin network resulted in reduced permanent deformation from 21.1% to 6.5%, 19.6% to 5.7%, and 12.7% to 9.4% for the 2.8%, 1.5%, and 0.8% fibrinogen-containing silk sponges, respectively. Moreover, the fibrin formation lead to a more linear elastic behavior over longer strain ranges. In combination, the Calcein-AM/PI staining and MTT assay results indicate uniform cell adhesion on the surface and cytocompatibility of the silk/fibrin sponges, respectively. Moreover, the co-delivery of thrombin with fibrinogen via silk as carrier material is described, offering a more mechanically robust and durable system while preserving hemostatic features of the coagulant substances for the generation of hemostatic devices. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 687-696, 2017.


Assuntos
Portadores de Fármacos , Fibrinogênio , Fibroínas , Hemostáticos , Mioblastos/metabolismo , Trombina , Animais , Linhagem Celular , Portadores de Fármacos/química , Portadores de Fármacos/farmacologia , Fibrinogênio/química , Fibrinogênio/farmacologia , Fibroínas/química , Fibroínas/farmacologia , Hemostáticos/química , Hemostáticos/farmacologia , Camundongos , Mioblastos/citologia , Trombina/química , Trombina/farmacologia
13.
J Mater Sci Mater Med ; 27(12): 188, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27817094

RESUMO

Schwann cells play a key role in peripheral nerve regeneration. Failure in sufficient formation of Büngner bands due to impaired Schwann cell proliferation has significant effects on the functional outcome after regeneration. Therefore, the growth substrate for Schwann cells should be considered with highest priority in any peripheral nerve tissue engineering approach. Due to its excellent biocompatibility silk fibroin has most recently attracted considerable interest as a biomaterial for use as conduit material in peripheral nerve regeneration. In this study we established a protocol to covalently bind collagen and laminin, which have been isolated from human placenta, to silk fibroin utilizing carbodiimide chemistry. Altered adhesion, viability and proliferation of Schwann cells were evaluated. A cell adhesion assay revealed that the functionalization with both, laminin or collagen, significantly improved Schwann cell adhesion to silk fibroin. Moreover laminin drastically accelerated adhesion. Schwann cell proliferation and viability assessed with BrdU and MTT assay, respectively, were significantly increased in the laminin-functionalized groups. The results suggest beneficial effects of laminin on both, cell adhesion as well as proliferative behaviour of Schwann cells. To conclude, the covalent tailoring of silk fibroin drastically enhances its properties as a cell substratum for Schwann cells, which might help to overcome current hurdles bridging long distance gaps in peripheral nerve injuries with the use of silk-based nerve guidance conduits.


Assuntos
Fibroínas/química , Placenta/química , Células de Schwann/citologia , Animais , Bombyx , Adesão Celular , Proliferação de Células , Sobrevivência Celular , Colágeno/química , Feminino , Regeneração Tecidual Guiada/métodos , Laminina/química , Masculino , Microscopia de Fluorescência , Regeneração Nervosa/efeitos dos fármacos , Gravidez , Ligação Proteica , Ratos , Ratos Sprague-Dawley , Engenharia Tecidual/métodos , Alicerces Teciduais/química
14.
Cytotherapy ; 18(6): 760-70, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27068763

RESUMO

BACKGROUND AIMS: As new approaches for peripheral nerve regeneration are sought, there is an increasing demand for native Schwann cells for in vitro testing and/or reimplantation. Extracorporeal shockwave treatment (ESWT) is an emergent technology in the field of regenerative medicine that has also recently been shown to improve peripheral nerve regeneration. METHODS: In this study, we elucidate the effects of ESWT on Schwann cell isolation and culture. Rat sciatic nerves were dissected and treated with ESWT, and Schwann cells were isolated and cultured for 15 passages. RESULTS: Single treatment of the whole nerve ex vivo led to significantly increased extracellular adenosinetriphosphate as an immediate consequence, and subsequently a number of effects on the culture were observed, starting with a significantly increased Schwann cell yield after isolation. In the ESWT group, the quality of culture, reflected in consistently higher purity (S100b, morphology), proliferation rate (5-bromo-2-deoxyuridine, population doublings per passage) and expression of regenerative phenotype-associated markers (P75, glial fibrillary acidic protein, c-Jun), was significantly improved. In contrast, the control group exhibited progressively senescent behavior, reflected in a decrease of proliferation, loss of specific markers and increase in P16(INK4A) expression. CONCLUSIONS: ESWT has beneficial effects on Schwann cell isolation and culture.


Assuntos
Ondas de Choque de Alta Energia/efeitos adversos , Regeneração Nervosa/fisiologia , Nervos Periféricos/citologia , Células de Schwann/citologia , Nervo Isquiático/citologia , Animais , Proliferação de Células , Separação Celular/métodos , Células Cultivadas , Proteína Glial Fibrilar Ácida/metabolismo , Fenótipo , Ratos
15.
J Biol Chem ; 289(39): 27090-27104, 2014 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-25118288

RESUMO

Shock wave treatment accelerates impaired wound healing in diverse clinical situations. However, the mechanisms underlying the beneficial effects of shock waves have not yet been fully revealed. Because cell proliferation is a major requirement in the wound healing cascade, we used in vitro studies and an in vivo wound healing model to study whether shock wave treatment influences proliferation by altering major extracellular factors and signaling pathways involved in cell proliferation. We identified extracellular ATP, released in an energy- and pulse number-dependent manner, as a trigger of the biological effects of shock wave treatment. Shock wave treatment induced ATP release, increased Erk1/2 and p38 MAPK activation, and enhanced proliferation in three different cell types (C3H10T1/2 murine mesenchymal progenitor cells, primary human adipose tissue-derived stem cells, and a human Jurkat T cell line) in vitro. Purinergic signaling-induced Erk1/2 activation was found to be essential for this proliferative effect, which was further confirmed by in vivo studies in a rat wound healing model where shock wave treatment induced proliferation and increased wound healing in an Erk1/2-dependent fashion. In summary, this report demonstrates that shock wave treatment triggers release of cellular ATP, which subsequently activates purinergic receptors and finally enhances proliferation in vitro and in vivo via downstream Erk1/2 signaling. In conclusion, our findings shed further light on the molecular mechanisms by which shock wave treatment exerts its beneficial effects. These findings could help to improve the clinical use of shock wave treatment for wound healing.


Assuntos
Trifosfato de Adenosina/metabolismo , Proliferação de Células , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Ondas de Choque de Alta Energia , Sistema de Sinalização das MAP Quinases , Cicatrização , Adulto , Animais , Ativação Enzimática , MAP Quinases Reguladas por Sinal Extracelular/genética , Feminino , Humanos , Células Jurkat , Masculino , Camundongos , Ratos , Ratos Sprague-Dawley
16.
Acta Biomater ; 10(6): 2506-17, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24530561

RESUMO

Various tissue engineering (TE) approaches are based on silk fibroin (SF) as scaffold material because of its superior mechanical and biological properties compared to other materials. The translation of one-step TE approaches to clinical application has generally failed so far due to the requirement of a prolonged cell seeding step before implantation. Here, we propose that the plant lectin WGA (wheat germ agglutinin), covalently bound to SF, will mediate cell adhesion in a time frame acceptable to be part of a one-step surgical intervention. After the establishment of a modification protocol utilizing carbodiimide chemistry, we examined the attachment of cells, with a special focus on adipose-derived stromal cells (ASC), on WGA-SF compared to pure native SF. After a limited time frame of 20min the attachment of ASCs to WGA-SF showed an increase of about 17-fold, as compared to pure native SF. The lectin-mediated cell adhesion further showed an enhanced resistance to trypsin (as a protease model) and to applied fluid shear stress (mechanical stability). Moreover, we could demonstrate that the adhesion of ASCs on the WGA-SF does not negatively influence proliferation or differentiation potential into the osteogenic lineage. To test for in vitro immune response, the proliferation of peripheral blood mononuclear cells in contact with the WGA-SF was determined, showing no alterations compared to plain SF. All these findings suggest that the WGA modification of SF offers important benefits for translation of SF scaffolds into clinical applications.


Assuntos
Adesão Celular , Fibroínas , Lectinas/química , Seda , Diferenciação Celular , Células Cultivadas , Humanos , Propriedades de Superfície
17.
Front Physiol ; 4: 101, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23730288

RESUMO

Apart from ATP synthesis mitochondria have many other functions, one being nitrite reductase activity. Nitric oxide (NO) released from nitrite has been shown to protect the heart from ischemia/reperfusion (I/R) injury in a cGMP-dependent manner. However, the exact impact of mitochondria on the release of NO from nitrite in cardiomyocytes is not completely understood. Besides mitochondria, a number of non-mitochondrial metalloproteins have been suggested to facilitate this process. The aim of this study was to investigate the impact of mitochondria on the bioactivation of nitrite in HL-1 cardiomyocytes. The levels of nitrosyl complexes of hemoglobin (NO-Hb) and cGMP levels were measured by electron spin resonance spectroscopy and enzyme immunoassay. In addition the formation of free NO was determined by confocal microscopy as well as intracellular nitrite and S-nitrosothiols by chemoluminescence analysis. NO was released from nitrite in cell culture in an oxygen-dependent manner. Application of specific inhibitors of the respiratory chain, p450, NO synthases (NOS) and xanthine oxidoreductase (XOR) showed that all four enzymatic systems are involved in the release of NO, but more than 50% of NO is released via the mitochondrial pathway. Only NO released by mitochondria activated cGMP synthesis. Cardiomyocytes co-cultured with red blood cells (RBC) competed with RBC for nitrite, but free NO was detected only in HL-1 cells suggesting that RBC are not a source of NO in this model. Apart from activation of cGMP synthesis, NO formed in HL-1 cells diffused out of the cells and formed NO-Hb complexes. In addition nitrite was converted by HL-1 cells to S-nitrosyl complexes. In HL-1 cardiomyocytes, several enzymatic systems are involved in nitrite reduction to NO but only the mitochondrial pathway of NO release activates cGMP synthesis. Our data suggest that this pathway may be a key regulator of myocardial contractility especially under hypoxic conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA