Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
PLoS One ; 19(8): e0307929, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39150908

RESUMO

Mangrove forests are fundamental coastal ecosystems for the variety of services they provide, including green-house gas regulation, coastal protection and home to a great biodiversity. Mexico is the fourth country with the largest extension of mangroves of which 60% occurs in the Yucatan Peninsula. Understanding the microbial component of mangrove forests is necessary for their critical roles in biogeochemical cycles, ecosystem health, function and restoration initiatives. Here we study the relation between the microbial community from sediments and the restoration process of mangrove forests, comparing conserved, degraded and restored mangroves along the northern coast of the Yucatan peninsula. Results showed that although each sampling site had a differentiated microbial composition, the taxa belonged predominantly to Proteobacteria (13.2-23.6%), Desulfobacterota (7.6-8.3%) and Chloroflexi (9-15.7%) phyla, and these were similar between rainy and dry seasons. Conserved mangroves showed significantly higher diversity than degraded ones, and restored mangroves recovered their microbial diversity from the degraded state (Dunn test p-value Benjamini-Hochberg adjusted = 0.0034 and 0.0071 respectively). The structure of sediment microbial ß-diversity responded significantly to the mangrove conservation status and physicochemical parameters (organic carbon content, redox potential, and salinity). Taxa within Chloroflexota, Desulfobacterota and Thermoplasmatota showed significantly higher abundance in degraded mangrove samples compared to conserved ones. This study can help set a baseline that includes the microbial component in health assessment and restoration strategies of mangrove forests.


Assuntos
Biodiversidade , México , Áreas Alagadas , Sedimentos Geológicos/microbiologia , Microbiota , RNA Ribossômico 16S/genética , Bactérias/genética , Bactérias/classificação , Bactérias/isolamento & purificação , Proteobactérias/genética , Proteobactérias/isolamento & purificação , Proteobactérias/classificação , Conservação dos Recursos Naturais/métodos , Ecossistema
2.
PeerJ ; 11: e14587, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36785710

RESUMO

Mangroves are unique coastal ecosystems, which have many important ecological functions, as they are a reservoir of many marine species well adapted to saline conditions and are fundamental as sites of carbon storage. Although the microbial contribution to nutrient cycling in these ecosystems has been well recognized, there is a lack of information regarding the microbial composition and structure of different ecological types of mangrove forests. In this study, we characterized the microbial community (Bacteria and Archaea) in sediments associated with five ecological types of mangrove forests in a coastal lagoon dominated by Avicennia germinans and Rhizophora mangle, through 16S rRNA-V4 gene sequencing. Overall, Proteobacteria (51%), Chloroflexi (12%), Gemmatimonadetes (5%) and Planctomycetes (6%) were the most abundant bacterial phyla, while Thaumarchaeota (30%), Bathyarchaeota (21%) and Nanoarchaeaeota (18%) were the dominant archaeal phyla. The microbial composition associated with basin mangroves dominated by Avicennia germinans was significantly different from the other ecological types, which becomes relevant for restoration strategies.


Assuntos
Avicennia , Microbiota , México , RNA Ribossômico 16S/genética , Áreas Alagadas , Avicennia/genética , Bactérias/genética , Archaea/genética , Microbiota/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA