Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
FEBS J ; 291(6): 1186-1198, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38087972

RESUMO

Trypanosoma cruzi, a heme auxotrophic parasite, can control intracellular heme content by modulating heme responsive gene (TcHRG) expression when a free heme source is added to an axenic culture. Herein, we explored the role of TcHRG protein in regulating the uptake of heme derived from hemoglobin in epimastigotes. We demonstrate that the endogenous TcHRG (protein and mRNA) responded similarly to bound (hemoglobin) and free (hemin) heme. Endogenous TcHRG was found in the flagellar pocket boundaries and partially overlapping with the mitochondrion. On the other hand, endocytic null parasites were able to develop and exhibited a similar heme content compared to wild-type when fed with hemoglobin, indicating that endocytosis is not the main entrance pathway for hemoglobin-derived heme in this parasite. Moreover, the overexpression of TcHRG led to an increase in heme content when hemoglobin was used as the heme source. Taken together, these results suggest that the uptake of hemoglobin-derived heme likely occurs through extracellular proteolysis of hemoglobin via the flagellar pocket, and this process is governed by TcHRG. In sum, T. cruzi epimastigotes control heme homeostasis by modulating TcHRG expression independently of the available source of heme.


Assuntos
Trypanosoma cruzi , Trypanosoma cruzi/fisiologia , Heme/metabolismo , Transporte Biológico , Hemoglobinas/metabolismo , Mitocôndrias/metabolismo
2.
Nat Commun ; 14(1): 3277, 2023 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-37280202

RESUMO

NADP(H) is a central metabolic hub providing reducing equivalents to multiple biosynthetic, regulatory and antioxidative pathways in all living organisms. While biosensors are available to determine NADP+ or NADPH levels in vivo, no probe exists to estimate the NADP(H) redox status, a determinant of the cell energy availability. We describe herein the design and characterization of a genetically-encoded ratiometric biosensor, termed NERNST, able to interact with NADP(H) and estimate ENADP(H). NERNST consists of a redox-sensitive green fluorescent protein (roGFP2) fused to an NADPH-thioredoxin reductase C module which selectively monitors NADP(H) redox states via oxido-reduction of the roGFP2 moiety. NERNST is functional in bacterial, plant and animal cells, and organelles such as chloroplasts and mitochondria. Using NERNST, we monitor NADP(H) dynamics during bacterial growth, environmental stresses in plants, metabolic challenges to mammalian cells, and wounding in zebrafish. NERNST estimates the NADP(H) redox poise in living organisms, with various potential applications in biochemical, biotechnological and biomedical research.


Assuntos
Plantas , Peixe-Zebra , Animais , NADP/metabolismo , Peixe-Zebra/metabolismo , Oxirredução , Plantas/genética , Plantas/metabolismo , Cloroplastos/metabolismo , Mamíferos/metabolismo
3.
bioRxiv ; 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-37066141

RESUMO

Trypanosoma cruzi, a heme auxotrophic parasite, can control intracellular heme content by modulating TcHRG expression when a free heme source is added to axenic culture. Herein, we explore the role of TcHRG protein in regulating the uptake of heme derived from hemoglobin in epimastigotes. It was found that the parasités endogenous TcHRG (protein and mRNA) responds similarly to bound (hemoglobin) and free (hemin) heme. Additionally, the overexpression of TcHRG leads to an increase in intracellular heme content. The localization of TcHRG is also not affected in parasites supplemented with hemoglobin as the sole heme source. Endocytic null epimastigotes do not show a significant difference in growth profile, intracellular heme content and TcHRG protein accumulation compared to WT when feeding with hemoglobin or hemin as a source of heme. These results suggest that the uptake of hemoglobin-derived heme likely occurs through extracellular proteolysis of hemoglobin via the flagellar pocket, and this process is governed by TcHRG. In sum, T. cruzi epimastigotes controls heme homeostasis by modulating TcHRG expression independently of the source of available heme.

4.
J Biol Chem ; 295(38): 13202-13212, 2020 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-32709751

RESUMO

Heme is an essential cofactor for many biological processes in aerobic organisms, which can synthesize it de novo through a conserved pathway. Trypanosoma cruzi, the etiological agent of Chagas disease, as well as other trypanosomatids relevant to human health, are heme auxotrophs, meaning they must import it from their mammalian hosts or insect vectors. However, how these species import and regulate heme levels is not fully defined yet. It is known that the membrane protein TcHTE is involved in T. cruzi heme transport, although its specific role remains unclear. In the present work, we studied endogenous TcHTE in the different life cycle stages of the parasite to gain insight into its function in heme transport and homeostasis. We have confirmed that TcHTE is predominantly detected in replicative stages (epimastigote and amastigote), in which heme transport activity was previously validated. We also showed that in epimastigotes, TcHTE protein and mRNA levels decrease in response to increments in heme concentration, confirming it as a member of the heme response gene family. Finally, we demonstrated that T. cruzi epimastigotes can sense intracellular heme by an unknown mechanism and regulate heme transport to adapt to changing conditions. Based on these results, we propose a model in which T. cruzi senses intracellular heme and regulates heme transport activity by adjusting the expression of TcHTE. The elucidation and characterization of heme transport and homeostasis will contribute to a better understanding of a critical pathway for T. cruzi biology allowing the identification of novel and essential proteins.


Assuntos
Heme/metabolismo , Homeostase , Modelos Biológicos , Proteínas de Protozoários/metabolismo , Trypanosoma cruzi/metabolismo , Doença de Chagas/genética , Doença de Chagas/metabolismo , Heme/genética , Humanos , Proteínas de Protozoários/genética , Trypanosoma cruzi/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA