Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
bioRxiv ; 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38766054

RESUMO

Identifying the causal variants and mechanisms that drive complex traits and diseases remains a core problem in human genetics. The majority of these variants have individually weak effects and lie in non-coding gene-regulatory elements where we lack a complete understanding of how single nucleotide alterations modulate transcriptional processes to affect human phenotypes. To address this, we measured the activity of 221,412 trait-associated variants that had been statistically fine-mapped using a Massively Parallel Reporter Assay (MPRA) in 5 diverse cell-types. We show that MPRA is able to discriminate between likely causal variants and controls, identifying 12,025 regulatory variants with high precision. Although the effects of these variants largely agree with orthogonal measures of function, only 69% can plausibly be explained by the disruption of a known transcription factor (TF) binding motif. We dissect the mechanisms of 136 variants using saturation mutagenesis and assign impacted TFs for 91% of variants without a clear canonical mechanism. Finally, we provide evidence that epistasis is prevalent for variants in close proximity and identify multiple functional variants on the same haplotype at a small, but important, subset of trait-associated loci. Overall, our study provides a systematic functional characterization of likely causal common variants underlying complex and molecular human traits, enabling new insights into the regulatory grammar underlying disease risk.

2.
Nat Methods ; 21(4): 723-734, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38504114

RESUMO

The ENCODE Consortium's efforts to annotate noncoding cis-regulatory elements (CREs) have advanced our understanding of gene regulatory landscapes. Pooled, noncoding CRISPR screens offer a systematic approach to investigate cis-regulatory mechanisms. The ENCODE4 Functional Characterization Centers conducted 108 screens in human cell lines, comprising >540,000 perturbations across 24.85 megabases of the genome. Using 332 functionally confirmed CRE-gene links in K562 cells, we established guidelines for screening endogenous noncoding elements with CRISPR interference (CRISPRi), including accurate detection of CREs that exhibit variable, often low, transcriptional effects. Benchmarking five screen analysis tools, we find that CASA produces the most conservative CRE calls and is robust to artifacts of low-specificity single guide RNAs. We uncover a subtle DNA strand bias for CRISPRi in transcribed regions with implications for screen design and analysis. Together, we provide an accessible data resource, predesigned single guide RNAs for targeting 3,275,697 ENCODE SCREEN candidate CREs with CRISPRi and screening guidelines to accelerate functional characterization of the noncoding genome.


Assuntos
Sistemas CRISPR-Cas , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Humanos , Sistemas CRISPR-Cas/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , RNA Guia de Sistemas CRISPR-Cas , Genoma , Células K562
3.
Hum Mol Genet ; 33(3): 270-283, 2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-37930192

RESUMO

While genome-wide association studies (GWAS) and positive selection scans identify genomic loci driving human phenotypic diversity, functional validation is required to discover the variant(s) responsible. We dissected the IVD gene locus-which encodes the isovaleryl-CoA dehydrogenase enzyme-implicated by selection statistics, multiple GWAS, and clinical genetics as important to function and fitness. We combined luciferase assays, CRISPR/Cas9 genome-editing, massively parallel reporter assays (MPRA), and a deletion tiling MPRA strategy across regulatory loci. We identified three regulatory variants, including an indel, that may underpin GWAS signals for pulmonary fibrosis and testosterone, and that are linked on a positively selected haplotype in the Japanese population. These regulatory variants exhibit synergistic and opposing effects on IVD expression experimentally. Alleles at these variants lie on a haplotype tagged by the variant most strongly associated with IVD expression and metabolites, but with no functional evidence itself. This work demonstrates how comprehensive functional investigation and multiple technologies are needed to discover the true genetic drivers of phenotypic diversity.


Assuntos
Isovaleril-CoA Desidrogenase , Oxirredutases atuantes sobre Doadores de Grupo CH-CH , Humanos , Isovaleril-CoA Desidrogenase/genética , Oxirredutases/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/genética , Estudo de Associação Genômica Ampla , Expressão Gênica
4.
Science ; 380(6643): eabn2253, 2023 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-37104592

RESUMO

Conserved genomic sequences disrupted in humans may underlie uniquely human phenotypic traits. We identified and characterized 10,032 human-specific conserved deletions (hCONDELs). These short (average 2.56 base pairs) deletions are enriched for human brain functions across genetic, epigenomic, and transcriptomic datasets. Using massively parallel reporter assays in six cell types, we discovered 800 hCONDELs conferring significant differences in regulatory activity, half of which enhance rather than disrupt regulatory function. We highlight several hCONDELs with putative human-specific effects on brain development, including HDAC5, CPEB4, and PPP2CA. Reverting an hCONDEL to the ancestral sequence alters the expression of LOXL2 and developmental genes involved in myelination and synaptic function. Our data provide a rich resource to investigate the evolutionary mechanisms driving new traits in humans and other species.


Assuntos
Encéfalo , Evolução Molecular , Regulação da Expressão Gênica no Desenvolvimento , Deleção de Sequência , Humanos , Sequência Conservada/genética , Genoma , Genômica , Proteínas de Ligação a RNA/genética , Encéfalo/crescimento & desenvolvimento
5.
Cell Genom ; 3(1): 100234, 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36777181

RESUMO

Both upregulation and downregulation by cis-regulatory elements help modulate precise gene expression. However, our understanding of repressive elements is far more limited than activating elements. To address this gap, we characterized RE1, a group of transcriptional silencers bound by REST, at genome-wide scale using a modified massively parallel reporter assay (MPRAduo). MPRAduo empirically defined a minimal binding strength of REST (REST motif-intrinsic value [m-value]), above which cofactors colocalize and silence transcription. We identified 1,500 human variants that alter RE1 silencing and found that their effect sizes are predictable when they overlap with REST-binding sites above the m-value. Additionally, we demonstrate that non-canonical REST-binding motifs exhibit silencer function only if they precisely align half sites with specific spacer lengths. Our results show mechanistic insights into RE1, which allow us to predict its activity and effect of variants on RE1, providing a paradigm for performing genome-wide functional characterization of transcription-factor-binding sites.

6.
Nat Commun ; 14(1): 913, 2023 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-36808133

RESUMO

Although >90% of somatic mutations reside in non-coding regions, few have been reported as cancer drivers. To predict driver non-coding variants (NCVs), we present a transcription factor (TF)-aware burden test based on a model of coherent TF function in promoters. We apply this test to NCVs from the Pan-Cancer Analysis of Whole Genomes cohort and predict 2555 driver NCVs in the promoters of 813 genes across 20 cancer types. These genes are enriched in cancer-related gene ontologies, essential genes, and genes associated with cancer prognosis. We find that 765 candidate driver NCVs alter transcriptional activity, 510 lead to differential binding of TF-cofactor regulatory complexes, and that they primarily impact the binding of ETS factors. Finally, we show that different NCVs within a promoter often affect transcriptional activity through shared mechanisms. Our integrated computational and experimental approach shows that cancer NCVs are widespread and that ETS factors are commonly disrupted.


Assuntos
Neoplasias , Humanos , Mutação , Neoplasias/genética , Sítios de Ligação/genética , Fatores de Transcrição/metabolismo , Regulação da Expressão Gênica
7.
Nat Genet ; 54(5): 603-612, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35513721

RESUMO

Genome-wide association studies (GWASs) have uncovered hundreds of autoimmune disease-associated loci; however, the causal genetic variants within each locus are mostly unknown. Here, we perform high-throughput allele-specific reporter assays to prioritize disease-associated variants for five autoimmune diseases. By examining variants that both promote allele-specific reporter expression and are located in accessible chromatin, we identify 60 putatively causal variants that enrich for statistically fine-mapped variants by up to 57.8-fold. We introduced the risk allele of a prioritized variant (rs72928038) into a human T cell line and deleted the orthologous sequence in mice, both resulting in reduced BACH2 expression. Naive CD8 T cells from mice containing the deletion had reduced expression of genes that suppress activation and maintain stemness and, upon acute viral infection, displayed greater propensity to become effector T cells. Our results represent an example of an effective approach for prioritizing variants and studying their physiologically relevant effects.


Assuntos
Doenças Autoimunes , Estudo de Associação Genômica Ampla , Alelos , Animais , Doenças Autoimunes/genética , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla/métodos , Camundongos , Polimorfismo de Nucleotídeo Único/genética , Sequências Reguladoras de Ácido Nucleico , Linfócitos T
8.
Cell Rep Med ; 3(4): 100583, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35480627

RESUMO

The SARS-CoV-2 Delta variant rose to dominance in mid-2021, likely propelled by an estimated 40%-80% increased transmissibility over Alpha. To investigate if this ostensible difference in transmissibility is uniform across populations, we partner with public health programs from all six states in New England in the United States. We compare logistic growth rates during each variant's respective emergence period, finding that Delta emerged 1.37-2.63 times faster than Alpha (range across states). We compute variant-specific effective reproductive numbers, estimating that Delta is 63%-167% more transmissible than Alpha (range across states). Finally, we estimate that Delta infections generate on average 6.2 (95% CI 3.1-10.9) times more viral RNA copies per milliliter than Alpha infections during their respective emergence. Overall, our evidence suggests that Delta's enhanced transmissibility can be attributed to its innate ability to increase infectiousness, but its epidemiological dynamics may vary depending on underlying population attributes and sequencing data availability.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/epidemiologia , Humanos , New England/epidemiologia , Saúde Pública , SARS-CoV-2/genética
9.
Nat Microbiol ; 7(1): 108-119, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34907347

RESUMO

The global spread and continued evolution of SARS-CoV-2 has driven an unprecedented surge in viral genomic surveillance. Amplicon-based sequencing methods provide a sensitive, low-cost and rapid approach but suffer a high potential for contamination, which can undermine laboratory processes and results. This challenge will increase with the expanding global production of sequences across a variety of laboratories for epidemiological and clinical interpretation, as well as for genomic surveillance of emerging diseases in future outbreaks. We present SDSI + AmpSeq, an approach that uses 96 synthetic DNA spike-ins (SDSIs) to track samples and detect inter-sample contamination throughout the sequencing workflow. We apply SDSIs to the ARTIC Consortium's amplicon design, demonstrate their utility and efficiency in a real-time investigation of a suspected hospital cluster of SARS-CoV-2 cases and validate them across 6,676 diagnostic samples at multiple laboratories. We establish that SDSI + AmpSeq provides increased confidence in genomic data by detecting and correcting for relatively common, yet previously unobserved modes of error, including spillover and sample swaps, without impacting genome recovery.


Assuntos
Primers do DNA/normas , SARS-CoV-2/genética , Análise de Sequência/normas , COVID-19/diagnóstico , Primers do DNA/síntese química , Genoma Viral/genética , Humanos , Controle de Qualidade , RNA Viral/genética , Reprodutibilidade dos Testes , Análise de Sequência/métodos , Sequenciamento Completo do Genoma , Fluxo de Trabalho
10.
PLoS Comput Biol ; 17(12): e1009670, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34898596

RESUMO

Cis-Regulatory elements (cis-REs) include promoters, enhancers, and insulators that regulate gene expression programs via binding of transcription factors. ATAC-seq technology effectively identifies active cis-REs in a given cell type (including from single cells) by mapping accessible chromatin at base-pair resolution. However, these maps are not immediately useful for inferring specific functions of cis-REs. For this purpose, we developed a deep learning framework (CoRE-ATAC) with novel data encoders that integrate DNA sequence (reference or personal genotypes) with ATAC-seq cut sites and read pileups. CoRE-ATAC was trained on 4 cell types (n = 6 samples/replicates) and accurately predicted known cis-RE functions from 7 cell types (n = 40 samples) that were not used in model training (mean average precision = 0.80, mean F1 score = 0.70). CoRE-ATAC enhancer predictions from 19 human islet samples coincided with genetically modulated gain/loss of enhancer activity, which was confirmed by massively parallel reporter assays (MPRAs). Finally, CoRE-ATAC effectively inferred cis-RE function from aggregate single nucleus ATAC-seq (snATAC) data from human blood-derived immune cells that overlapped with known functional annotations in sorted immune cells, which established the efficacy of these models to study cis-RE functions of rare cells without the need for cell sorting. ATAC-seq maps from primary human cells reveal individual- and cell-specific variation in cis-RE activity. CoRE-ATAC increases the functional resolution of these maps, a critical step for studying regulatory disruptions behind diseases.


Assuntos
Sequenciamento de Cromatina por Imunoprecipitação/métodos , Aprendizado Profundo , Sequências Reguladoras de Ácido Nucleico/genética , Análise de Célula Única/métodos , Células Cultivadas , Biologia Computacional , DNA/análise , DNA/genética , Humanos , Ilhotas Pancreáticas/citologia , Monócitos/citologia
11.
medRxiv ; 2021 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-34642698

RESUMO

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Delta variant quickly rose to dominance in mid-2021, displacing other variants, including Alpha. Studies using data from the United Kingdom and India estimated that Delta was 40-80% more transmissible than Alpha, allowing Delta to become the globally dominant variant. However, it was unclear if the ostensible difference in relative transmissibility was due mostly to innate properties of Delta's infectiousness or differences in the study populations. To investigate, we formed a partnership with SARS-CoV-2 genomic surveillance programs from all six New England US states. By comparing logistic growth rates, we found that Delta emerged 37-163% faster than Alpha in early 2021 (37% Massachusetts, 75% New Hampshire, 95% Maine, 98% Rhode Island, 151% Connecticut, and 163% Vermont). We next computed variant-specific effective reproductive numbers and estimated that Delta was 58-120% more transmissible than Alpha across New England (58% New Hampshire, 68% Massachusetts, 76% Connecticut, 85% Rhode Island, 98% Maine, and 120% Vermont). Finally, using RT-PCR data, we estimated that Delta infections generate on average ∼6 times more viral RNA copies per mL than Alpha infections. Overall, our evidence indicates that Delta's enhanced transmissibility could be attributed to its innate ability to increase infectiousness, but its epidemiological dynamics may vary depending on the underlying immunity and behavior of distinct populations.

12.
Cell ; 184(20): 5247-5260.e19, 2021 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-34534445

RESUMO

3' untranslated region (3'UTR) variants are strongly associated with human traits and diseases, yet few have been causally identified. We developed the massively parallel reporter assay for 3'UTRs (MPRAu) to sensitively assay 12,173 3'UTR variants. We applied MPRAu to six human cell lines, focusing on genetic variants associated with genome-wide association studies (GWAS) and human evolutionary adaptation. MPRAu expands our understanding of 3'UTR function, suggesting that simple sequences predominately explain 3'UTR regulatory activity. We adapt MPRAu to uncover diverse molecular mechanisms at base pair resolution, including an adenylate-uridylate (AU)-rich element of LEPR linked to potential metabolic evolutionary adaptations in East Asians. We nominate hundreds of 3'UTR causal variants with genetically fine-mapped phenotype associations. Using endogenous allelic replacements, we characterize one variant that disrupts a miRNA site regulating the viral defense gene TRIM14 and one that alters PILRB abundance, nominating a causal variant underlying transcriptional changes in age-related macular degeneration.


Assuntos
Regiões 3' não Traduzidas/genética , Evolução Biológica , Doença/genética , Estudo de Associação Genômica Ampla , Algoritmos , Alelos , Regulação da Expressão Gênica , Genes Reporter , Variação Genética , Humanos , Fenótipo , Polimorfismo de Nucleotídeo Único/genética , Polirribossomos/metabolismo , Locos de Características Quantitativas/genética , RNA/genética
14.
Nat Commun ; 12(1): 5242, 2021 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-34475398

RESUMO

Genome-wide association studies (GWAS) have linked single nucleotide polymorphisms (SNPs) at >250 loci in the human genome to type 2 diabetes (T2D) risk. For each locus, identifying the functional variant(s) among multiple SNPs in high linkage disequilibrium is critical to understand molecular mechanisms underlying T2D genetic risk. Using massively parallel reporter assays (MPRA), we test the cis-regulatory effects of SNPs associated with T2D and altered in vivo islet chromatin accessibility in MIN6 ß cells under steady state and pathophysiologic endoplasmic reticulum (ER) stress conditions. We identify 1,982/6,621 (29.9%) SNP-containing elements that activate transcription in MIN6 and 879 SNP alleles that modulate MPRA activity. Multiple T2D-associated SNPs alter the activity of short interspersed nuclear element (SINE)-containing elements that are strongly induced by ER stress. We identify 220 functional variants at 104 T2D association signals, narrowing 54 signals to a single candidate SNP. Together, this study identifies elements driving ß cell steady state and ER stress-responsive transcriptional activation, nominates causal T2D SNPs, and uncovers potential roles for repetitive elements in ß cell transcriptional stress response and T2D genetics.


Assuntos
Diabetes Mellitus Tipo 2/genética , Estresse do Retículo Endoplasmático/genética , Células Secretoras de Insulina/patologia , Polimorfismo de Nucleotídeo Único , Ativação Transcricional/genética , Alelos , Animais , Linhagem Celular , Cromatina/metabolismo , Diabetes Mellitus Tipo 2/patologia , Estudo de Associação Genômica Ampla , Humanos , Camundongos , Locos de Características Quantitativas , Elementos Nucleotídeos Curtos e Dispersos/genética
15.
Nat Genet ; 53(8): 1166-1176, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34326544

RESUMO

Effective interpretation of genome function and genetic variation requires a shift from epigenetic mapping of cis-regulatory elements (CREs) to characterization of endogenous function. We developed hybridization chain reaction fluorescence in situ hybridization coupled with flow cytometry (HCR-FlowFISH), a broadly applicable approach to characterize CRISPR-perturbed CREs via accurate quantification of native transcripts, alongside CRISPR activity screen analysis (CASA), a hierarchical Bayesian model to quantify CRE activity. Across >325,000 perturbations, we provide evidence that CREs can regulate multiple genes, skip over the nearest gene and display activating and/or silencing effects. At the cholesterol-level-associated FADS locus, we combine endogenous screens with reporter assays to exhaustively characterize multiple genome-wide association signals, functionally nominate causal variants and, importantly, identify their target genes.


Assuntos
Hibridização in Situ Fluorescente/métodos , Sequências Reguladoras de Ácido Nucleico , Proteínas Adaptadoras de Transdução de Sinal/genética , Teorema de Bayes , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Dessaturase de Ácido Graxo Delta-5 , Desoxirribonuclease I/genética , Desoxirribonuclease I/metabolismo , Ácidos Graxos Dessaturases/genética , Citometria de Fluxo , Fator de Transcrição GATA1/genética , Humanos , Células K562 , Proteínas com Domínio LIM/genética , Modelos Genéticos , Polimorfismo de Nucleotídeo Único , Proteínas Proto-Oncogênicas/genética , Locos de Características Quantitativas , RNA Guia de Cinetoplastídeos
16.
Cell ; 183(3): 684-701.e14, 2020 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-33058756

RESUMO

Positive selection in Europeans at the 2q21.3 locus harboring the lactase gene has been attributed to selection for the ability of adults to digest milk to survive famine in ancient times. However, the 2q21.3 locus is also associated with obesity and type 2 diabetes in humans, raising the possibility that additional genetic elements in the locus may have contributed to evolutionary adaptation to famine by promoting energy storage, but which now confer susceptibility to metabolic diseases. We show here that the miR-128-1 microRNA, located at the center of the positively selected locus, represents a crucial metabolic regulator in mammals. Antisense targeting and genetic ablation of miR-128-1 in mouse metabolic disease models result in increased energy expenditure and amelioration of high-fat-diet-induced obesity and markedly improved glucose tolerance. A thrifty phenotype connected to miR-128-1-dependent energy storage may link ancient adaptation to famine and modern metabolic maladaptation associated with nutritional overabundance.


Assuntos
Doenças Metabólicas/genética , MicroRNAs/genética , Adipócitos Marrons/patologia , Adiposidade , Alelos , Animais , Diferenciação Celular , Linhagem Celular , Células Cultivadas , Dieta Hiperlipídica , Metabolismo Energético , Epigênese Genética , Loci Gênicos , Glucose/metabolismo , Homeostase , Humanos , Hipertrofia , Resistência à Insulina , Leptina/deficiência , Leptina/metabolismo , Masculino , Mamíferos/genética , Camundongos Endogâmicos C57BL , Camundongos Obesos , MicroRNAs/metabolismo , Obesidade/genética , Oligonucleotídeos/metabolismo , Especificidade da Espécie
17.
Nat Commun ; 11(1): 1237, 2020 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-32144282

RESUMO

Genome-wide association studies have associated thousands of genetic variants with complex traits and diseases, but pinpointing the causal variant(s) among those in tight linkage disequilibrium with each associated variant remains a major challenge. Here, we use seven experimental assays to characterize all common variants at the multiple disease-associated TNFAIP3 locus in five disease-relevant immune cell lines, based on a set of features related to regulatory potential. Trait/disease-associated variants are enriched among SNPs prioritized based on either: (1) residing within CRISPRi-sensitive regulatory regions, or (2) localizing in a chromatin accessible region while displaying allele-specific reporter activity. Of the 15 trait/disease-associated haplotypes at TNFAIP3, 9 have at least one variant meeting one or both of these criteria, 5 of which are further supported by genetic fine-mapping. Our work provides a comprehensive strategy to characterize genetic variation at important disease-associated loci, and aids in the effort to identify trait causal genetic variants.


Assuntos
Doenças Autoimunes/genética , Loci Gênicos/genética , Estudo de Associação Genômica Ampla/métodos , Herança Multifatorial/genética , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/genética , Linhagem Celular Tumoral , Predisposição Genética para Doença , Variação Genética/imunologia , Haplótipos/genética , Haplótipos/imunologia , Humanos , Desequilíbrio de Ligação , Herança Multifatorial/imunologia , Estudo de Prova de Conceito
19.
Hum Mutat ; 38(9): 1240-1250, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28220625

RESUMO

In many human diseases, associated genetic changes tend to occur within noncoding regions, whose effect might be related to transcriptional control. A central goal in human genetics is to understand the function of such noncoding regions: given a region that is statistically associated with changes in gene expression (expression quantitative trait locus [eQTL]), does it in fact play a regulatory role? And if so, how is this role "coded" in its sequence? These questions were the subject of the Critical Assessment of Genome Interpretation eQTL challenge. Participants were given a set of sequences that flank eQTLs in humans and were asked to predict whether these are capable of regulating transcription (as evaluated by massively parallel reporter assays), and whether this capability changes between alternative alleles. Here, we report lessons learned from this community effort. By inspecting predictive properties in isolation, and conducting meta-analysis over the competing methods, we find that using chromatin accessibility and transcription factor binding as features in an ensemble of classifiers or regression models leads to the most accurate results. We then characterize the loci that are harder to predict, putting the spotlight on areas of weakness, which we expect to be the subject of future studies.


Assuntos
Biologia Computacional/métodos , Expressão Gênica , Regulação da Expressão Gênica , Predisposição Genética para Doença , Humanos , Locos de Características Quantitativas
20.
Proc Natl Acad Sci U S A ; 114(7): E1291-E1300, 2017 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-28137873

RESUMO

Enhancers regulate gene expression through the binding of sequence-specific transcription factors (TFs) to cognate motifs. Various features influence TF binding and enhancer function-including the chromatin state of the genomic locus, the affinities of the binding site, the activity of the bound TFs, and interactions among TFs. However, the precise nature and relative contributions of these features remain unclear. Here, we used massively parallel reporter assays (MPRAs) involving 32,115 natural and synthetic enhancers, together with high-throughput in vivo binding assays, to systematically dissect the contribution of each of these features to the binding and activity of genomic regulatory elements that contain motifs for PPARγ, a TF that serves as a key regulator of adipogenesis. We show that distinct sets of features govern PPARγ binding vs. enhancer activity. PPARγ binding is largely governed by the affinity of the specific motif site and higher-order features of the larger genomic locus, such as chromatin accessibility. In contrast, the enhancer activity of PPARγ binding sites depends on varying contributions from dozens of TFs in the immediate vicinity, including interactions between combinations of these TFs. Different pairs of motifs follow different interaction rules, including subadditive, additive, and superadditive interactions among specific classes of TFs, with both spatially constrained and flexible grammars. Our results provide a paradigm for the systematic characterization of the genomic features underlying regulatory elements, applicable to the design of synthetic regulatory elements or the interpretation of human genetic variation.


Assuntos
Elementos Facilitadores Genéticos/genética , Regulação da Expressão Gênica , Genômica/métodos , Fatores de Transcrição/metabolismo , Células 3T3-L1 , Animais , Sítios de Ligação/genética , Camundongos , Mutação , Motivos de Nucleotídeos/genética , PPAR gama/metabolismo , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA