Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cell Mol Life Sci ; 80(9): 266, 2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37624561

RESUMO

The morphogen Sonic Hedgehog (SHH) plays an important role in coordinating embryonic development. Short- and long-range SHH signalling occurs through a variety of membrane-associated and membrane-free forms. However, the molecular mechanisms that govern the early events of the trafficking of neosynthesised SHH in mammalian cells are still poorly understood. Here, we employed the retention using selective hooks (RUSH) system to show that newly-synthesised SHH is trafficked through the classical biosynthetic secretory pathway, using TMED10 as an endoplasmic reticulum (ER) cargo receptor for efficient ER-to-Golgi transport and Rab6 vesicles for Golgi-to-cell surface trafficking. TMED10 and SHH colocalized at ER exit sites (ERES), and TMED10 depletion significantly delays SHH loading onto ERES and subsequent exit leading to significant SHH release defects. Finally, we utilised the Drosophila wing imaginal disc model to demonstrate that the homologue of TMED10, Baiser (Bai), participates in Hedgehog (Hh) secretion and signalling in vivo. In conclusion, our work highlights the role of TMED10 in cargo-specific egress from the ER and sheds light on novel important partners of neosynthesised SHH secretion with potential impact on embryonic development.


Assuntos
Proteínas Hedgehog , Transdução de Sinais , Feminino , Animais , Proteínas Hedgehog/genética , Membrana Celular , Drosophila , Via Secretória , Mamíferos
2.
Curr Biol ; 32(2): 361-373.e6, 2022 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-34890558

RESUMO

Morphogens are secreted molecules that regulate and coordinate major developmental processes, such as cell differentiation and tissue morphogenesis. Depending on the mechanisms of secretion and the nature of their carriers, morphogens act at short and long range. We investigated the paradigmatic long-range activity of Hedgehog (Hh), a well-known morphogen, and its contribution to the growth and patterning of the Drosophila wing imaginal disc. Extracellular vesicles (EVs) contribute to Hh long-range activity; however, the nature, the site, and the mechanisms underlying the biogenesis of these vesicular carriers remain unknown. Here, through the analysis of mutants and a series of Drosophila RNAi-depleted wing imaginal discs using fluorescence and live-imaging electron microscopy, including tomography and 3D reconstruction, we demonstrate that microvilli of the wing imaginal disc epithelium are the site of generation of small EVs that transport Hh across the tissue. Further, we show that the Prominin-like (PromL) protein is critical for microvilli integrity. Together with actin cytoskeleton and membrane phospholipids, PromL maintains microvilli architecture that is essential to promote its secretory function. Importantly, the distribution of Hh to microvilli and its release via these EVs contribute to the proper morphogenesis of the wing imaginal disc. Our results demonstrate that microvilli-derived EVs are carriers for Hh long-range signaling in vivo. By establishing that members of the Prominin protein family are key determinants of microvilli formation and integrity, our findings support the view that microvilli-derived EVs conveying Hh may provide a means for exchanging signaling cues of high significance in tissue development and cancer.


Assuntos
Proteínas de Drosophila , Vesículas Extracelulares , Antígeno AC133/metabolismo , Animais , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Vesículas Extracelulares/metabolismo , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Discos Imaginais , Microvilosidades/metabolismo , Morfogênese , Asas de Animais
3.
Biol Open ; 10(12)2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34779478

RESUMO

Wnt signalling is a core pathway involved in a wide range of developmental processes throughout the metazoa. In vitro studies have suggested that the small GTP binding protein Arf6 regulates upstream steps of Wnt transduction, by promoting the phosphorylation of the Wnt co-receptor, LRP6, and the release of ß-catenin from the adherens junctions. To assess the relevance of these previous findings in vivo, we analysed the consequence of the absence of Arf6 activity on Drosophila wing patterning, a developmental model of Wnt/Wingless signalling. We observed a dominant loss of wing margin bristles and Senseless expression in Arf6 mutant flies, phenotypes characteristic of a defect in high level Wingless signalling. In contrast to previous findings, we show that Arf6 is required downstream of Armadillo/ß-catenin stabilisation in Wingless signal transduction. Our data suggest that Arf6 modulates the activity of a downstream nuclear regulator of Pangolin activity in order to control the induction of high level Wingless signalling. Our findings represent a novel regulatory role for Arf6 in Wingless signalling.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Fatores de Transcrição/metabolismo , Via de Sinalização Wnt , Proteína Wnt1/genética , Proteína Wnt1/metabolismo
4.
J Cell Sci ; 134(10)2021 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-34028543

RESUMO

In metazoans, tissue growth and patterning is partly controlled by the Hedgehog (Hh) morphogen. Using immuno-electron microscopy on Drosophila wing imaginal discs, we identified a cellular structure, the Hherisomes, which contain the majority of intracellular Hh. Hherisomes are recycling tubular endosomes, and their formation is specifically boosted by overexpression of Hh. Expression of Rab11, a small GTPase involved in recycling endosomes, boosts the size of Hherisomes and their Hh concentration. Conversely, increased expression of the transporter Dispatched, a regulator of Hh secretion, leads to their clearance. We show that increasing Hh density in Hherisomes through Rab11 overexpression enhances both the level of Hh signaling and disc pouch growth, whereas Dispatched overexpression decreases high-level Hh signaling and growth. We propose that, upon secretion, a pool of Hh triggers low-level signaling, whereas a second pool of Hh is endocytosed and recycled through Hherisomes to stimulate high-level signaling and disc pouch growth. Altogether, our data indicate that Hherisomes are required to sustain physiological Hh activity necessary for patterning and tissue growth in the wing disc.


Assuntos
Proteínas de Drosophila , Proteínas Hedgehog , Animais , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Endossomos/genética , Endossomos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Transdução de Sinais , Asas de Animais
5.
Development ; 148(5)2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33547132

RESUMO

The Hedgehog (Hh) morphogen gradient is required for patterning during metazoan development, yet the mechanisms involved in Hh apical and basolateral release and how this influences short- and long-range target induction are poorly understood. We found that depletion of the GTPase Rab8 in Hh-producing cells induces an imbalance between the level of apically and laterally released Hh. This leads to non-cell-autonomous differential effects on the expression of Hh target genes, namely an increase in its short-range targets and a concomitant decrease in long-range targets. We further found that Rab8 regulates the endocytosis and apico-basal distribution of Ihog, a transmembrane protein known to bind to Hh and to be crucial for establishment of the Hh gradient. Our data provide new insights into morphogen gradient formation, whereby morphogen activity is functionally distributed between apically and basolaterally secreted pools.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Proteínas Hedgehog/metabolismo , Animais , Animais Geneticamente Modificados/metabolismo , Proteínas de Drosophila/antagonistas & inibidores , Proteínas de Drosophila/genética , Endocitose , Endossomos/metabolismo , GTP Fosfo-Hidrolases/antagonistas & inibidores , GTP Fosfo-Hidrolases/genética , Regulação da Expressão Gênica , Proteínas Hedgehog/genética , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Mutagênese , Estabilidade Proteica , Interferência de RNA , RNA de Cadeia Dupla/metabolismo , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Transdução de Sinais
6.
Development ; 147(24)2020 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-33355241

RESUMO

Members of the Hedgehog family of morphogens mediate the intercellular communication necessary for the organisation and development of many animal tissues. They are modified by various lipid adducts, rendering them insoluble in hydrophilic environments and leading to the contentious question of how these molecules travel in the aqueous extracellular space. Seminal work carried out by Suzanne Eaton and her colleagues has shed light on how these morphogens can spread over long distances through their association with lipoprotein particles. In this Spotlight article, we discuss Suzanne's pioneering work and her contribution to our understanding of the transport and activity of morphogens, in particular Hedgehog. We also describe two other essential aspects of her work: the discovery and characterisation of endogenously present Hedgehog variants, as well as her proposition that, in addition to its role as a morphogen, Hedgehog acts as an endocrine hormone.


Assuntos
Comunicação Celular/genética , Proteínas de Drosophila/genética , Proteínas Hedgehog/genética , Morfogênese/genética , Animais , Interações Hidrofóbicas e Hidrofílicas , Transdução de Sinais/genética , Asas de Animais/crescimento & desenvolvimento , Asas de Animais/metabolismo , Proteínas Wnt/genética
7.
J Cell Sci ; 133(18)2020 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-32989011

RESUMO

Secreted morphogens play a major role in the intercellular communication necessary for animal development. It was initially thought that, in order to organize tissue morphogenesis and control cell fate and proliferation, morphogens diffused freely in the extracellular space. This view has since changed following the discovery that morphogens of the Wnt and Hedgehog (Hh) families are modified by various lipid adducts during their biosynthesis, providing them with high affinity for the membrane bilayer. Recent work performed in model organisms suggests that Wnt and Hh proteins are carried on extracellular vesicles. In this Review, we provide our perspectives on the mechanisms of formation of Wnt- and Hh-containing extracellular vesicles, and discuss their functions during animal development, as well as in various human physiopathologies.


Assuntos
Vesículas Extracelulares , Proteínas Hedgehog , Animais , Comunicação Celular , Proteínas Hedgehog/genética , Humanos , Morfogênese , Proteínas Wnt/genética
8.
Cell Rep ; 30(8): 2627-2643.e5, 2020 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-32101741

RESUMO

The conserved Hedgehog signaling pathway has well-established roles in development. However, its function during adulthood remains largely unknown. Here, we investigated whether the Hedgehog signaling pathway is active during adult life in Drosophila melanogaster, and we uncovered a protective function for Hedgehog signaling in coordinating correct proteostasis in glial cells. Adult-specific depletion of Hedgehog reduces lifespan, locomotor activity, and dopaminergic neuron integrity. Conversely, increased expression of Hedgehog extends lifespan and improves fitness. Moreover, Hedgehog pathway activation in glia rescues the lifespan and age-associated defects of hedgehog mutants. The Hedgehog pathway regulates downstream chaperones, whose overexpression in glial cells was sufficient to rescue the shortened lifespan and proteostasis defects of hedgehog mutants. Finally, we demonstrate the protective ability of Hedgehog signaling in a Drosophila Alzheimer's disease model expressing human amyloid beta in the glia. Overall, we propose that Hedgehog signaling is requisite for lifespan determination and correct proteostasis in glial cells.


Assuntos
Drosophila melanogaster/metabolismo , Proteínas Hedgehog/metabolismo , Longevidade , Neuroglia/metabolismo , Proteostase , Transdução de Sinais , Peptídeos beta-Amiloides/metabolismo , Animais , Encéfalo/metabolismo , Sobrevivência Celular , Modelos Animais de Doenças , Neurônios Dopaminérgicos/metabolismo , Homeostase , Humanos , Modelos Biológicos , Mutação/genética , Neurônios/metabolismo , Neuroproteção , Análise de Sobrevida
9.
Dev Cell ; 32(3): 290-303, 2015 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-25619925

RESUMO

The proteins of the Hedgehog (Hh) family are secreted proteins exerting short- and long-range control over various cell fates in developmental patterning. The Hh gradient in Drosophila wing imaginal discs consists of apical and basolateral secreted pools, but the mechanisms governing the overall establishment of the gradient remain unclear. We investigated the relative contributions of endocytosis and recycling to control the Hh gradient. We show that, upon its initial apical secretion, Hh is re-internalized. We examined the effect of the resistance-nodulation-division transporter Dispatched (Disp) on long-range Hh signaling and unexpectedly found that Disp is specifically required for apical endocytosis of Hh. Re-internalized Hh is then regulated in a Rab5- and Rab4-dependent manner to ensure its long-range activity. We propose that Hh-producing cells integrate endocytosis and recycling as two instrumental mechanisms contributing to regulate the long-range activity of Hh.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Endocitose/fisiologia , Proteínas Hedgehog/metabolismo , Asas de Animais/metabolismo , Proteínas rab4 de Ligação ao GTP/metabolismo , Proteínas rab5 de Ligação ao GTP/metabolismo , Animais , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Redes e Vias Metabólicas/fisiologia , Transdução de Sinais/fisiologia
10.
Nature ; 516(7529): 99-103, 2014 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-25471885

RESUMO

The conserved family of Hedgehog (Hh) proteins acts as short- and long-range secreted morphogens, controlling tissue patterning and differentiation during embryonic development. Mature Hh carries hydrophobic palmitic acid and cholesterol modifications essential for its extracellular spreading. Various extracellular transportation mechanisms for Hh have been suggested, but the pathways actually used for Hh secretion and transport in vivo remain unclear. Here we show that Hh secretion in Drosophila wing imaginal discs is dependent on the endosomal sorting complex required for transport (ESCRT). In vivo the reduction of ESCRT activity in cells producing Hh leads to a retention of Hh at the external cell surface. Furthermore, we show that ESCRT activity in Hh-producing cells is required for long-range signalling. We also provide evidence that pools of Hh and ESCRT proteins are secreted together into the extracellular space in vivo and can subsequently be detected together at the surface of receiving cells. These findings uncover a new function for ESCRT proteins in controlling morphogen activity and reveal a new mechanism for the transport of secreted Hh across the tissue by extracellular vesicles, which is necessary for long-range target induction.


Assuntos
Drosophila melanogaster/embriologia , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Proteínas Hedgehog/metabolismo , Animais , Diferenciação Celular , Drosophila melanogaster/citologia , Drosophila melanogaster/metabolismo , Espaço Extracelular/metabolismo , Hemolinfa/metabolismo , Discos Imaginais/citologia , Discos Imaginais/embriologia , Transporte Proteico , Transdução de Sinais , Vesículas Transportadoras/metabolismo
11.
Nat Commun ; 5: 5034, 2014 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-25289679

RESUMO

Hedgehog (Hh) signalling is crucial for developmental patterning and tissue homeostasis. In Drosophila, Hh signalling is mediated by a bifunctional transcriptional mediator, called Cubitus interruptus (Ci). Protein Kinase A (PKA)-dependent phosphorylation of the serpentine protein Smoothened (Smo) leads to Ci activation, whereas PKA-dependent phosphorylation of Ci leads to the formation of Ci repressor form. The mechanism that switches PKA from an activator to a repressor is not known. Here we show that Hh signalling activation causes PKA to switch its substrates from Ci to Smo within the Hh signalling complex (HSC). In particular, Hh signalling increases the level of Smo, which then outcompetes Ci for association with PKA and causes a switch in PKA substrate recognition. We propose a new model in which the PKA is constitutively present and active within the HSC, and in which the relative levels of Ci and Smo within the HSC determine differential activation and cellular response to Hh signalling.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , Proteínas Hedgehog/metabolismo , Modelos Biológicos , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais/fisiologia , Fatores de Transcrição/metabolismo , Animais , Western Blotting , DNA Complementar/genética , Imunoprecipitação , Fosforilação , Interferência de RNA , Receptor Smoothened , Especificidade por Substrato
12.
Nat Rev Mol Cell Biol ; 14(7): 416-29, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23719536

RESUMO

The cloning of the founding member of the Hedgehog (HH) family of secreted proteins two decades ago inaugurated a field that has diversified to encompass embryonic development, stem cell biology and tissue homeostasis. Interest in HH signalling increased when the pathway was implicated in several cancers and congenital syndromes. The mechanism of HH signalling is complex and remains incompletely understood. Nevertheless, studies have revealed novel biological insights into this system, including the function of HH lipidation in the secretion and transport of this ligand and details of the signal transduction pathway, which involves Patched 1, Smoothened and GLI proteins (Cubitus interruptus in Drosophila melanogaster), as well as, in vertebrates, primary cilia.


Assuntos
Padronização Corporal , Proteínas Hedgehog/fisiologia , Neoplasias/metabolismo , Transdução de Sinais , Animais , Cílios/metabolismo , Humanos , Processamento de Proteína Pós-Traducional , Receptores de Superfície Celular/metabolismo , Via Secretória
13.
Development ; 139(17): 3168-79, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22872085

RESUMO

During development, secreted morphogens, such as Hedgehog (Hh), control cell fate and proliferation. Precise sensing of morphogen levels and dynamic cellular responses are required for morphogen-directed morphogenesis, yet the molecular mechanisms responsible are poorly understood. Several recent studies have suggested the involvement of a multi-protein Hh reception complex, and have hinted at an understated complexity in Hh sensing at the cell surface. We show here that the expression of the proteoglycan Dally in Hh-receiving cells in Drosophila is necessary for high but not low level pathway activity, independent of its requirement in Hh-producing cells. We demonstrate that Dally is necessary to sequester Hh at the cell surface and to promote Hh internalisation with its receptor. This internalisation depends on both the activity of the hydrolase Notum and the glycosyl-phosphatidyl-inositol (GPI) moiety of Dally, and indicates a departure from the role of the second glypican Dally-like in Hh signalling. Our data suggest that hydrolysis of the Dally-GPI by Notum provides a switch from low to high level signalling by promoting internalisation of the Hh-Patched ligand-receptor complex.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila/embriologia , Proteínas Hedgehog/metabolismo , Glicoproteínas de Membrana/metabolismo , Morfogênese/fisiologia , Proteoglicanas/metabolismo , Transdução de Sinais/fisiologia , Animais , Animais Geneticamente Modificados , Western Blotting , Células Cultivadas , Processamento de Imagem Assistida por Computador , Microscopia de Fluorescência
14.
Dev Cell ; 22(2): 279-94, 2012 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-22306085

RESUMO

The graded Hedgehog (Hh) signal is transduced by the transmembrane Smoothened (Smo) proteins in both vertebrates and invertebrates. In Drosophila, associations between Smo and the Fused (Fu)/Costal-2 (Cos2)/Cubitus Interruptus (Ci) cytoplasmic complex lead to pathway activation, but it remains unclear how the cytoplasmic complex responds to and transduces different levels of Hh signaling. We show here that, within the Hh gradient field, low- and high-magnitude Smo activations control differentially the phosphorylation of Cos2 on two distinct serines. We also provide evidence that these phosphorylations depend on the Fu kinase activity and lead to a shift of Cos2 distribution from the cytoplasm to the plasma membrane. Moreover, the distinct Cos2 phosphorylation states mediate differential Hh signaling magnitude, suggesting that phosphorylation and relocation of Cos2 to the plasma membrane facilitate high-level Hh signaling through the control of Ci nuclear translocation and transcriptional activity.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Quinase 2 de Receptor Acoplado a Proteína G/metabolismo , Proteínas Hedgehog/metabolismo , Cinesinas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animais , Animais Geneticamente Modificados , Western Blotting , Membrana Celular/metabolismo , Células Cultivadas , Citoplasma/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Quinase 2 de Receptor Acoplado a Proteína G/genética , Proteínas Hedgehog/genética , Imunoprecipitação , Cinesinas/genética , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Transporte Proteico , Receptores Acoplados a Proteínas G/genética , Transdução de Sinais , Receptor Smoothened , Ativação Transcricional
15.
Curr Opin Cell Biol ; 24(2): 173-80, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22366329

RESUMO

Secretion of the Hedgehog morphogen induces different cell fates over the short and long ranges during developmental patterning. Mature Hedgehog carries hydrophobic palmitic acid and cholesterol modifications essential for its correct spread. The long-range activity of Hedgehog raises questions about how a dually lipidated protein can spread in the hydrophilic environment of the extracellular space. There is compelling experimental evidence in favour of the existence of several different carriers for Hedgehog transportation, via very different routes. This suggests that different accessory proteins and cellular machineries may be involved in the specific release of Hedgehog. I suggest that Hh carriers may work in parallel within a given cell and that developmental context may condition the choice of Hh carrier in secreting cells.


Assuntos
Proteínas de Transporte/isolamento & purificação , Proteínas Hedgehog/metabolismo , Morfogênese , Animais , Membrana Celular/metabolismo , Colesterol/metabolismo , Espaço Extracelular/química , Espaço Extracelular/metabolismo , Ácido Palmítico/metabolismo , Processamento de Proteína Pós-Traducional , Transporte Proteico
16.
Dev Cell ; 18(4): 605-20, 2010 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-20412775

RESUMO

Cell fate determination during developmental patterning is often controlled by concentration gradients of morphogens. In the epithelial field, morphogens like the Hedgehog (Hh) peptides diffuse both apically and basolaterally; however, whether both pools of Hh are sensed at the cellular level is unclear. Here, we show that interfering with the amount of apical Hh causes a dramatic change in the long-range activation of low-threshold Hh target genes, without similar effect on short-range, high-threshold targets. We provide genetic evidence that the glypican Dally upregulates apical Hh levels, and that the release of Dally by the hydrolase Notum promotes apical Hh long-range activity. Our data suggest that several pools of Hh are perceived in epithelial tissues. Thus, we propose that the overall gradient of Hh is a composite of pools secreted by different routes (apical and basolateral), and that a cellular summation of these components is required for appropriate developmental patterning.


Assuntos
Proteínas de Drosophila/metabolismo , Proteínas Hedgehog/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteoglicanas/metabolismo , Alelos , Animais , Padronização Corporal , Linhagem da Célula , Cruzamentos Genéticos , Drosophila melanogaster , Endocitose , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Fluorescência Verde/metabolismo , Microscopia de Fluorescência/métodos , Modelos Biológicos , Transdução de Sinais
17.
Trends Cell Biol ; 20(5): 287-98, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20207148

RESUMO

The Hedgehog signalling pathway controls numerous developmental processes. In response to Hedgehog, Smoothened (Smo), a seven-pass transmembrane protein, orchestrates pathway signalling and controls transcription factor activation. In the absence of Hedgehog, the receptor Patched indirectly inhibits Smo in a catalytic manner. Many questions surrounding Smo activation and signalling remain. Recent findings in Drosophila and vertebrate systems have provided strong evidence that Smo acts as a G-protein-coupled receptor. We discuss the role and regulation of Smo and reassess similarities between Smo and G-protein-coupled receptors. We also examine recently identified members of the invertebrate and vertebrate Smo signalling cascades that are typical components of G-protein-coupled receptor pathways. Greater understanding of the mechanisms of Smo activation and its signalling pathways will allow implementation of novel strategies to target disorders related to disruption of Hh signalling.


Assuntos
Proteínas Hedgehog/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais , Animais , Proteínas de Drosophila/metabolismo , Humanos , Modelos Biológicos , Fosforilação , Ligação Proteica , Receptor Smoothened
18.
J Biol Chem ; 285(4): 2562-8, 2010 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-19920144

RESUMO

The hedgehog (HH) family of ligands plays an important instructional role in metazoan development. HH proteins are initially produced as approximately 45-kDa full-length proteins, which undergo an intramolecular cleavage to generate an amino-terminal product that subsequently becomes cholesterol-modified (HH-Np). It is well accepted that this cholesterol-modified amino-terminal cleavage product is responsible for all HH-dependent signaling events. Contrary to this model we show here that full-length forms of HH proteins are able to traffic to the plasma membrane and participate directly in cell-cell signaling, both in vitro and in vivo. We were also able to rescue a Drosophila eye-specific hh loss of function phenotype by expressing a full-length form of hh that cannot be processed into HH-Np. These results suggest that in some physiological contexts full-length HH proteins may participate directly in HH signaling and that this novel activity of full-length HH may be evolutionarily conserved.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Proteínas Hedgehog , Transdução de Sinais/fisiologia , Animais , Comunicação Celular/fisiologia , Embrião de Galinha , Galinhas , Drosophila , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Evolução Molecular , Proteínas Hedgehog/química , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Holoprosencefalia/genética , Holoprosencefalia/fisiopatologia , Humanos , Mutagênese Sítio-Dirigida , Tubo Neural/embriologia , Tubo Neural/fisiologia , Receptores Patched , Fenótipo , Estrutura Terciária de Proteína , Transporte Proteico/fisiologia , Coelhos , Receptores de Superfície Celular/metabolismo , Relação Estrutura-Atividade
19.
Genes Dev ; 23(16): 1843-8, 2009 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-19684109

RESUMO

The Hedgehog (Hh) proteins play a universal role in metazoan development. Nevertheless, fundamental differences exist between Drosophila and vertebrates in the transduction of the Hh signal, notably regarding the role of primary cilia in mammalian cells. In this issue of Genes & Development, Chen and colleagues (pp. 1910-1928) demonstrate that mouse Suppressor of fused (Sufu) regulates the stability of the transcription factors Gli2 and Gli3 by antagonizing the conserved Gli degradation device mediated by Hib/Spop in a cilia-independent manner.


Assuntos
Proteínas Hedgehog/fisiologia , Fatores de Transcrição Kruppel-Like/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas Repressoras/metabolismo , Transdução de Sinais , Animais , Cílios/fisiologia , Evolução Molecular , Regulação da Expressão Gênica , Camundongos , Proteínas Nucleares/metabolismo , Estabilidade Proteica , Complexos Ubiquitina-Proteína Ligase , Proteína Gli2 com Dedos de Zinco , Proteína Gli3 com Dedos de Zinco
20.
Dev Cell ; 14(5): 712-25, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18477454

RESUMO

Hedgehog (Hh) and Wingless (Wg) morphogens specify cell fate in a concentration-dependent manner in the Drosophila wing imaginal disc. Proteoglycans, components of the extracellular matrix, are involved in Hh and Wg stability, spreading, and reception. In this study, we demonstrate that the glycosyl-phosphatidyl-inositol (GPI) anchor of the glypican Dally-like (Dlp) is required for its apical internalization and its subsequent targeting to the basolateral compartment of the epithelium. Dlp endocytosis from the apical surface of Hh-receiving cells catalyzes the internalization of Hh bound to its receptor Patched (Ptc). The cointernalization of Dlp with the Hh/Ptc complex is dynamin dependent and necessary for full-strength Hh signaling. We also demonstrate that Wg is secreted apically in the disc epithelium and that apicobasal trafficking of Dlp allows Wg transcytosis to favor Wg spreading along the basolateral compartment. Thus, Dlp endocytosis is a common regulatory mechanism of both Hh and Wg morphogen action.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Endocitose , Glipicanas/metabolismo , Proteínas Hedgehog/metabolismo , Proteoglicanas/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Transdução de Sinais , Animais , Polaridade Celular , Drosophila melanogaster/citologia , Endossomos/metabolismo , Epitélio/metabolismo , Genes Dominantes , Glicosilfosfatidilinositóis/metabolismo , Receptores Patched , Transporte Proteico , Receptores de Superfície Celular/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Termodinâmica , Asas de Animais/citologia , Asas de Animais/metabolismo , Proteína Wnt1
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA