RESUMO
High-dose irradiation can trigger numerous endothelial dysfunctions, including apoptosis, the overexpression of adhesion molecules, and alteration of adherens junctions. Altogether, these endothelial dysfunctions contribute to the development of tissue inflammation and organ damage. The development of endothelial dysfunctions may depend on protein phosphorylation by various protein kinases, but the possible role of protein kinase A (PKA) has not been investigated so far, and efficient compounds able to protect the endothelium from irradiation effects are needed. Here we report the beneficial effects of the PKA inhibitor KT5720 on a panel of irradiation-induced endothelial dysfunctions in human pulmonary microvascular endothelial cells (HPMECs). High-dose X-irradiation (15 Gy) triggered the late apoptosis of HPMECs independent of the ceramide/P38 MAP kinase pathway or p53. In contrast, the treatment of HPMECs with KT5720 completely prevented irradiation-induced apoptosis, whether applied before or after cell irradiation. Immunostainings of irradiated monolayers revealed that KT5720 treatment preserved the overall integrity of endothelial monolayers and adherens junctions linking endothelial cells. Real-time impedance measurements performed in HPMEC monolayers confirmed the overall protective role of KT5720 against irradiation. Treatment with KT5720 before or after irradiation also reduced irradiation-induced ICAM-1 overexpression. Finally, the possible role for PKA in the development of endothelial dysfunctions is discussed, but the potency of KT5720 to inhibit the development of a panel of irradiation-induced endothelial dysfunctions, whether applied before or after irradiation, suggests that this compound could be of great interest for both the prevention and treatment of vascular damages in the event of exposure to a high dose of radiation.
Assuntos
Carbazóis , Proteínas Quinases Dependentes de AMP Cíclico , Células Endoteliais , Peptídeos e Proteínas de Sinalização Intracelular , Pirróis , Humanos , Células Endoteliais/metabolismo , Células Cultivadas , Proteínas Quinases Dependentes de AMP Cíclico/metabolismoRESUMO
Although radiation therapy plays a crucial role in cancer treatment, and techniques have improved continuously, irradiation induces side effects in healthy tissue. Radiation cystitis is a potential complication following the therapeutic irradiation of pelvic cancers and negatively impacts patients' quality of life (QoL). To date, no effective treatment is available, and this toxicity remains a therapeutic challenge. In recent times, stem cell-based therapy, particularly the use of mesenchymal stem cells (MSC), has gained attention in tissue repair and regeneration due to their easy accessibility and their ability to differentiate into several tissue types, modulate the immune system and secrete substances that help nearby cells grow and heal. In this review, we will summarize the pathophysiological mechanisms of radiation-induced injury to normal tissues, including radiation cystitis (RC). We will then discuss the therapeutic potential and limitations of MSCs and their derivatives, including packaged conditioned media and extracellular vesicles, in the management of radiotoxicity and RC.
Assuntos
Cistite , Vesículas Extracelulares , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Lesões por Radiação , Humanos , Qualidade de Vida , Lesões por Radiação/etiologia , Lesões por Radiação/terapia , Vesículas Extracelulares/fisiologia , Cistite/etiologia , Cistite/terapia , Células-Tronco Mesenquimais/fisiologiaRESUMO
BACKGROUND: Despite improvements in radiation techniques, pelvic radiotherapy is responsible for acute and delayed bladder adverse events, defined as radiation cystitis. The initial symptoms of bladder injury secondary to pelvic irradiation are likely to occur during treatment or within 3 months of radiotherapy in approximately 50% of irradiated patients, and have a significant impact on their quality of life. The pathophysiology of radiation cystitis is not well understood, particularly because of the risk of complications associated with access to bladder tissue after irradiation, which limits our ability to study this process and develop treatments. OBJECTIVE: It is an original study combining digital data collection to monitor patients' symptoms and biological markers during irradiation. The main objective of our study is to evaluate the correlation of biological biomarkers with the intensity of acute radiation cystitis and the quality of life of patients, assessed with the digital telemonitoring platform Cureety. METHODS: Patients with intermediate-risk localized prostate cancer who are eligible for localized radiotherapy will be included. Inflammatory biomarkers will be analyzed in urine and blood samples before the start of radiotherapy and at weeks 4, 12, and 48 of irradiation, through quantitative methods such as a multiplex Luminex assay, flow cytometry, and enzyme-linked immunosorbent assay. We will also characterize the patients' gut and urine microbiota composition using 16S ribosomal RNA sequencing technology. Between sample collection visits, patients will complete various questionnaires related to radiation cystitis symptoms (using the International Prostate Symptom Score), adverse events, and quality of life (using the Functional Assessment of Cancer Therapy-Prostate questionnaire), using the Cureety digital remote monitoring platform. Upon receipt of the questionnaires, an algorithm will process the information and classify patients in accordance with the severity of symptoms and adverse events reported on the basis of Common Terminology Criteria for Adverse Events and International Prostate Symptom Score standards. This will allow us to correlate levels of urinary, blood, and fecal biomarkers with the severity of acute radiation cystitis symptoms and patient-reported quality of life. RESULTS: The study started in March 2022. We estimate a recruitment period of approximately 18 months, and the final results are expected in 2024. CONCLUSIONS: This prospective study is the first to explore the overexpression of inflammatory proteins in fluid biopsies from patients with symptoms of acute radiation cystitis. In addition, the 1-year follow-up after treatment will allow us to predict which patients are at risk of late radiation cystitis and to refer them for radioprotective treatment. The results of this study will allow us to develop strategies to limit radiation damage to the bladder and improve the quality of life of patients. TRIAL REGISTRATION: ClinicalTrials.gov NCT05246774; https://clinicaltrials.gov/ct2/show/NCT05246774?term=NCT05246774. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): DERR1-10.2196/38362.
RESUMO
Introduction: Mesenchymal stromal cells (MSCs) have demonstrated therapeutic properties both in vitro and in vivo to treat various diseases, including anti-inflammatory, immunomodulatory and pro-angiogenic effects. These therapeutic effects are mediated by their secretome composed of soluble factors and extracellular vesicles (EVs). The composition of EVs reflects the molecular and functional characteristics of parental cells. MSC preconditioning can alter the composition of EVs, thereby influencing their therapeutic potential. Methods: MSCs were subjected to preconditioning with two cytokines, TNFα and IFNγ. Following 24 h of preconditioning, MSC-EVs secreted into the culture supernatant were isolated through tangential filtration. Particle concentration and size distribution were measured by nanoparticle tracking analysis, and the surface antigen expression of the EV-specific CD63 was quantified via Enzyme Linked ImmunoSorbent Assay. The angiogenic potential of MSCEVs obtained after preconditioning MSCs was assessed by the analysis of their protein composition and their influence on human umbilical vein endothelial cell (HUVECs) proliferation, migration, and tube-forming ability. Results: Preconditioning with TNFα and IFNγ did not influence the MSC-EV profile but did induce changes in their protein content. Indeed, the expression of pro-angiogenic proteins increased in EVs from preconditioned MSCs compared to EVs from no-preconditioned MSCs. EVs from preconditioned MSCs tend to stimulate HUVEC migration, proliferation and tubeforming ability. These observations imply the presence of a pro-angiogenic potential in EVs obtained after preconditioning of MSCs with TNFα and IFNγ. Discussion: In conclusion, it appears that the pro-angiogenic potential of EVs is enhanced through preconditioning of MSCs with TNFα and IFNγ. The use of these MSCs-EVs in therapy would circumvent the limitations of current cell-based therapies. Indeed, the therapeutic potential of MSC-EVs presents an attractive strategy for exploiting the clinical benefits of MSC therapy. For example, in the field of regenerative medicine, the exploitation of cell-free therapy using highly pro-angiogenic MSC-EVs is of great interest.
RESUMO
Background: Radiation cystitis (RC) results from chronic inflammation, fibrosis, and vascular damage. The urinary symptoms it causes have a serious impact on patients' quality of life. Despite the improvement in irradiation techniques, the incidence of radiation cystitis remains stable over time, and the therapeutic possibilities remain limited. Mesenchymal stem/stromal cells (MSC) appear to offer2 a promising therapeutic approach by promoting tissue repair through their paracrine action via extracellular vesicles (MSC-EVs) or conditioned medium from human mesenchymal stromal cells (MSC-CM). We assess the therapeutic potential of MSC-EVs or MSC-CM in an in vitro model of RC. Methods:in vitro RC was induced by irradiation of human bladder fibroblasts (HUBF) with the small-animal radiation research platform (SARRP). HUBF were induced towards an RC phenotype after 3 × 3.5 Gy irradiation in the presence of either MSC-EVs or MSC-CM, to assess their effect on fibrosis, angiogenesis, and inflammatory markers. Results: Our data revealed in vitro a higher therapeutic potential of MSC-EVs and MSC-CM in prevention of RC. This was confirmed by down-regulation of α-SMA and CTGF transcription, and the induction of the secretion of anti-fibrotic cytokines, such as IFNγ, IL10 and IL27 and the decrease in the secretion of pro-fibrotic cytokines, IGFBP2, IL1ß, IL6, IL18, PDGF, TNFα, and HGF, by irradiated HUBFs, conditioned with MSC-EVs or MSC-CM. The secretome of MSC (MSC-CM) or its subsecretome (MSC-EVs) are proangiogenic, with the ability to induce vessels from HUVEC cells, ensuring the management of bladder vascular lesions induced by irradiation. Conclusion: MSC-EVs and MSC-CM appear to have promising therapeutic potential in the prevention of RC in vitro, by targeting the three main stages of RC: fibrosis, inflammation and vascular damage.
RESUMO
The immunosuppressant drug Cyclosporin A (CsA) has been widely used to prevent the development of Graft-versus-Host Disease (GvHD) that can occur after transplantation, including allogeneic graft after accidental high-dose irradiation in humans. Here, we show that CsA alone stimulates ICAM-1 overexpression in human pulmonary microvascular endothelial cells (HPMECs) through Toll-Like Receptor 4 (TLR4) and NF-κB activation. In HPMECs, CsA treatment significantly worsened the overexpression of ICAM-1 induced by high-dose irradiation (15 Gy). This additive effect of CsA was also observed when ICAM-1 overexpression was induced by another pathway (Ca2+ entry) in macrovascular endothelial cells. In addition, CsA triggered apoptosis as well as rearrangement of the actin cytoskeleton and adherens junctions (VE-Cadherin) in microvascular endothelial monolayers. High-dose irradiation triggered similar deleterious effects in endothelial monolayers and, again, CsA treatment strongly aggravated the effects of irradiation. Altogether, these results suggest that post-transplant CsA treatment may exacerbate the deleterious effects of irradiation on the endothelium.