Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 4: 5198, 2014 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-24903579

RESUMO

X-ray grating interferometry is a promising imaging technique sensitive to attenuation, refraction and scattering of the radiation. Applications of this technique in the energy range between 80 and 150 keV pose severe technical challenges, and are still mostly unexplored. Phase-contrast X-ray imaging at such high energies is of relevant scientific and industrial interest, in particular for the investigation of strongly absorbing or thick materials as well as for medical imaging. Here we show the successful implementation of a Talbot-Lau interferometer operated at 100 keV using a conventional X-ray tube and a compact geometry, with a total length of 54 cm. We present the edge-on illumination of the gratings in order to overcome the current fabrication limits. Finally, the curved structures match the beam divergence and allow a large field of view on a short and efficient setup.

2.
Opt Express ; 21(25): 30183-95, 2013 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-24514597

RESUMO

We present a comparison for high-resolution imaging with a laboratory source between grating-based (GBI) and propagation-based (PBI) x-ray phase-contrast imaging. The comparison is done through simulations and experiments using a liquid-metal-jet x-ray microfocus source. Radiation doses required for detection in projection images are simulated as a function of the diameter of a cylindrical sample. Using monochromatic radiation, simulations show a lower dose requirement for PBI for small object features and a lower dose for GBI for larger object features. Using polychromatic radiation, such as that from a laboratory microfocus source, experiments and simulations show a lower dose requirement for PBI for a large range of feature sizes. Tested on a biological sample, GBI shows higher noise levels than PBI, but its advantage of quantitative refractive index reconstruction for multi-material samples becomes apparent.


Assuntos
Algoritmos , Intensificação de Imagem Radiográfica/métodos , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Difração de Raios X/métodos
3.
Opt Express ; 19(19): 18324-38, 2011 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-21935201

RESUMO

It is known that the sensitivity of X-ray phase-contrast grating interferometry with regard to electron density variations present in the sample is related to the minimum detectable refraction angle. In this article a numerical framework is developed that allows for a realistic and quantitative determination of the sensitivity. The framework is validated by comparisons with experimental results and then used for the quantification of several influences on the sensitivity, such as spatial coherence or the number of phase step images. In particular, we identify the ideal inter-grating distance with respect to the highest sensitivity for parallel beam geometry. This knowledge will help to optimize existing synchrotron-based grating interferometry setups.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA