RESUMO
OBJECTIVE: Punch biopsy, a standard diagnostic procedure for patients with cutaneous lupus erythematosus (CLE) carries an infection risk, is invasive, uncomfortable and potentially scarring, and impedes patient recruitment in clinical trials. Non-invasive tape sampling is an alternative that could enable serial evaluation of specific lesions. This cross-sectional pilot research study evaluated the use of a non-invasive adhesive tape device to collect messenger RNA (mRNA) from the skin surface of participants with CLE and healthy volunteers (HVs) and investigated its feasibility to detect biologically meaningful differences between samples collected from participants with CLE and samples from HVs. METHODS: Affected and unaffected skin tape samples and simultaneous punch biopsies were collected from 10 participants with CLE. Unaffected skin tape and punch biopsies were collected from 10 HVs. Paired samples were tested using quantitative PCR for a candidate immune gene panel and semi-quantitative immunohistochemistry for hallmark CLE proteins. RESULTS: mRNA collected using the tape device was of sufficient quality for amplification of 94 candidate immune genes. Among these, we found an interferon (IFN)-dominant gene cluster that differentiated CLE-affected from HV (23-fold change; p<0.001) and CLE-unaffected skin (sevenfold change; p=0.002), respectively. We found a CLE-associated gene cluster that differentiated CLE-affected from HV (fourfold change; p=0.005) and CLE-unaffected skin (fourfold change; p=0.012), respectively. Spearman's correlation between per cent area myxovirus 1 protein immunoreactivity and IFN-dominant mRNA gene cluster expression was highly significant (dermis, rho=0.86, p<0.001). In total, skin tape-derived RNA expression comprising both IFN-dominant and CLE-associated gene clusters correlated with per cent area immunoreactivity of some hallmark CLE-associated proteins in punch biopsies from the same lesions. CONCLUSIONS: A non-invasive tape RNA collection technique is a potential tool for repeated skin biomarker measures throughout a clinical trial.
Assuntos
Lúpus Eritematoso Cutâneo , Estudos Transversais , Feminino , Voluntários Saudáveis , Humanos , Masculino , RNA , PeleRESUMO
OBJECTIVE: Primary Sjögren's syndrome (pSS) is characterised by chronic hyperactivation of B lymphocytes. Salivary gland epithelial cells (SGECs) could play a role in promoting B-lymphocyte activation within the target tissue. We aimed to study the interactions between SGECs from patients with pSS or controls and B lymphocytes. METHODS: Patients had pSS according to 2016 European League Against Rheumatism/American College of Rheumatology criteria. Gene expression analysis of SGECs and B lymphocytes from pSS and controls isolated from salivary gland biopsies and blood was performed by RNA-seq. SGECs from pSS and controls were cocultured with B-lymphocytes sorted from healthy donor blood and were stimulated. Transwell and inhibition experiments were performed. RESULTS: Gene expression analysis of SGECs identified an upregulation of interferon signalling pathway and genes involved in immune responses (HLA-DRA, IL-7 and B-cell activating factor receptor) in pSS. Activation genes CD40 and CD48 were upregulated in salivary gland sorted B lymphocytes from patients with pSS. SGECs induced an increase in B-lymphocyte survival, which was higher for SGECs from patients with pSS than controls. Moreover, when stimulated with poly(I:C), SGECs from patients with pSS induced higher activation of B-lymphocytes than those from controls. This effect depended on soluble factors. Inhibition with anti-B-cell activating factor, anti-A proliferation-inducing ligand, anti-interleukin-6-R antibodies, JAK1/3 inhibitor or hydroxychloroquine had no effect, conversely to leflunomide, Bruton's tyrosine kinase (BTK) or phosphatidyl-inositol 3-kinase (PI3K) inhibitors. CONCLUSIONS: SGECs from patients with pSS had better ability than those from controls to induce survival and activation of B lymphocytes. Targeting a single cytokine did not inhibit this effect, whereas leflunomide, BTK or PI3K inhibitors partially decreased B-lymphocyte viability in this model. This gives indications for future therapeutic options in pSS.
Assuntos
Linfócitos B/imunologia , Células Epiteliais/imunologia , Ativação Linfocitária/imunologia , Glândulas Salivares/imunologia , Síndrome de Sjogren/imunologia , Idoso , Linfócitos B/metabolismo , Sobrevivência Celular , Células Cultivadas , Técnicas de Cocultura , Células Epiteliais/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Glândulas Salivares/metabolismo , TranscriptomaRESUMO
BACKGROUND: An interferon signature is involved in the pathogenesis of primary Sjögren syndrome (pSS), but whether the signature is type 1 or type 2 remains controversial. Mouse models and genetic studies suggest the involvement of TH1 and type 2 interferon pathways. Likewise, polymorphisms of the IL-12A gene (IL12A), which encodes for IL-12p35, have been associated with pSS. The IL-12p35 subunit is shared by 2 heterodimers: IL-12 and IL-35. OBJECTIVE: We sought to confirm genetic association of the IL12A polymorphism and pSS and elucidate involvement of the IL-12/IL-35 balance in patients with pSS by using functional studies. METHODS: The genetic study involved 673 patients with pSS from 2 French pSS cohorts and 585 healthy French control subjects. Functional studies were performed on sorted monocytes, irrespective of whether they were stimulated. IL12A mRNA expression and IL-12 and IL-35 protein levels were assessed by using quantitative RT-PCR and ELISA and a multiplex kit for IL-35 and IL-12, respectively. RESULTS: We confirmed association of the IL12A rs485497 polymorphism and pSS and found an increased serum protein level of IL-12p70 in patients with pSS carrying the risk allele (P = .016). Serum levels of IL-12p70 were greater in patients than control subjects (P = .0001), especially in patients with more active disease (P = .05); conversely, IL-35 levels were decreased in patients (P = .0001), especially in patients with more active disease (P = .05). In blood cellular subsets both IL12p35 and EBV-induced gene protein 3 (EBI3) mRNAs were detected only in B cells, with a trend toward a lower level among patients with pSS. CONCLUSION: Our findings emphasize involvement of the IL-12/IL-35 balance in the pathogenesis of pSS. Serum IL-35 levels were associated with low disease activity, in contrast with serum IL-12p70 levels, which were associated with more active disease.
Assuntos
Subunidade p35 da Interleucina-12/genética , Subunidade p35 da Interleucina-12/imunologia , Interleucinas/imunologia , Síndrome de Sjogren/imunologia , Idoso , Feminino , Genótipo , Humanos , Subunidade p35 da Interleucina-12/sangue , Interleucinas/sangue , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Síndrome de Sjogren/sangue , Síndrome de Sjogren/genéticaRESUMO
Despite being one of the most common rheumatologic diseases, there is still no disease-modifying drug for primary Sjögren's syndrome (pSS). Advancing our knowledge of the target tissue has been limited by the low dimensionality of histology techniques and the small size of human salivary gland biopsies. In this study, we took advantage of a molecularly validated mouse model of pSS to characterize tissue-infiltrating CD4+ T cells and their regulation by the lymphotoxin/LIGHT signaling axis. Novel cell subsets were identified by combining highly dimensional flow and mass cytometry with transcriptomic analyses. Pharmacologic modulation of the LTßR signaling pathway was achieved by treating mice with LTßR-Ig, a therapeutic intervention currently being tested in pSS patients (Baminercept trial NCT01552681). Using these approaches, we identified two novel CD4+ T cell subsets characterized by high levels of PD1: Prdm1+ effector regulatory T cells expressing immunoregulatory factors, such as Il10, Areg, Fgl2, and Itgb8, and Il21+ effector conventional T cells expressing a pathogenic transcriptional signature. Mirroring these observations in mice, large numbers of CD4+PD1+ T cells were detected in salivary glands from Sjögren's patients but not in normal salivary glands or kidney biopsies from lupus nephritis patients. Unexpectedly, LTßR-Ig selectively halted the recruitment of PD1- naive, but not PD1+, effector T cells to the target tissue, leaving the cells with pathogenic potential unaffected. Altogether, this study revealed new cellular players in pSS pathogenesis, their transcriptional signatures, and differential dependency on the lymphotoxin/LIGHT signaling axis that help to interpret the negative results of the Baminercept trial and will guide future therapeutic interventions.
Assuntos
Linfócitos T CD4-Positivos/imunologia , Receptor beta de Linfotoxina/metabolismo , Linfotoxina-alfa/metabolismo , Glândulas Salivares/imunologia , Síndrome de Sjogren/imunologia , Síndrome de Sjogren/fisiopatologia , Membro 14 da Superfamília de Ligantes de Fatores de Necrose Tumoral/metabolismo , Anfirregulina/genética , Animais , Biópsia , Ensaios Clínicos como Assunto , Modelos Animais de Doenças , Citometria de Fluxo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Humanos , Interleucina-10/genética , Interleucinas/genética , Rim/patologia , Nefrite Lúpica/imunologia , Linfotoxina-alfa/genética , Camundongos , Glândulas Salivares/patologia , Transdução de Sinais , Síndrome de Sjogren/terapia , Subpopulações de Linfócitos T/imunologia , Linfócitos T ReguladoresRESUMO
AIMS: Gastro-resistant dimethyl fumarate (DMF) is an oral therapeutic indicated for the treatment of relapsing multiple sclerosis. Recent data suggest that a primary pharmacodynamic response to DMF treatment is activation of the nuclear factor (erythroid-derived 2)-like 2 (NRF2) pathway; however, the gene targets modulated downstream of NRF2 that contribute to DMF-dependent effects are poorly understood. RESULTS: Using wild-type and NRF2 knockout mice, we characterized DMF transcriptional responses throughout the brain and periphery to understand DMF effects in vivo and to explore the necessity of NRF2 in this process. Our findings identified tissue-specific expression of NRF2 target genes as well as NRF2-dependent and -independent gene regulation after DMF administration. Furthermore, using gene ontology, we identified common biological pathways that may be regulated by DMF and contribute to in vivo functional effects. INNOVATION: Together, these data suggest that DMF modulates transcription through multiple pathways, which has implications for the cytoprotective, immunomodulatory, and clinical properties of DMF. CONCLUSION: These findings provide further understanding of the DMF mechanism of action and propose potential therapeutic targets that warrant further investigation for treating neurodegenerative diseases. Antioxid. Redox Signal. 24, 1058-1071.
Assuntos
Anti-Inflamatórios/farmacocinética , Fumarato de Dimetilo/farmacocinética , Fator 2 Relacionado a NF-E2/metabolismo , Administração Oral , Animais , Anti-Inflamatórios/administração & dosagem , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Fumarato de Dimetilo/administração & dosagem , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Regulação da Expressão Gênica/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Especificidade de Órgãos , Distribuição Tecidual , Transcriptoma/efeitos dos fármacosRESUMO
Spinal muscular atrophy (SMA) is a neuromuscular disease caused by disruption of the survival motor neuron 1 (SMN1) gene, partly compensated for by the paralogous gene SMN2. Exon 7 inclusion is critical for full-length SMN protein production and occurs at a much lower frequency for SMN2 than for SMN1. Antisense oligonucleotide (ASO)-mediated blockade of an intron 7 splicing silencer was previously shown to promote inclusion of SMN2 exon 7 in SMA mouse models and mediate phenotypic rescue. However, downstream molecular consequences of this ASO therapy have not been defined. Here we characterize the gene-expression changes that occur in an induced model of SMA and show substantial rescue of those changes in central nervous system tissue upon intracerebroventricular administration of an ASO that promotes inclusion of exon 7, with earlier administration promoting greater rescue. This study offers a robust reference set of preclinical pharmacodynamic gene expression effects for comparison of other investigational therapies for SMA.
Assuntos
Éxons , Expressão Gênica , Atrofia Muscular Espinal/genética , Oligonucleotídeos Antissenso/farmacologia , Animais , Modelos Animais de Doenças , Expressão Gênica/efeitos dos fármacos , Camundongos , Atrofia Muscular Espinal/tratamento farmacológico , Medula Espinal/efeitos dos fármacos , Medula Espinal/metabolismo , Proteína 2 de Sobrevivência do Neurônio Motor/efeitos dos fármacos , Proteína 2 de Sobrevivência do Neurônio Motor/genéticaRESUMO
A subset of patients with autoimmune diseases including rheumatoid arthritis (RA) and lupus appear to be exposed continually to interferon (IFN) as evidenced by elevated expression of IFN induced genes in blood cells. In lupus, detection of endogenous chromatin complexes by the innate sensing machinery is the suspected driver for the IFN, but the actual mechanisms remain unknown in all of these diseases. We investigated in two randomized clinical trials the effects on RA patients of baminercept, a lymphotoxin-beta receptor-immunoglobulin fusion protein that blocks the lymphotoxin-αß/LIGHT axis. Administration of baminercept led to a reduced RNA IFN signature in the blood of patients with elevated baseline signatures. Both RA and SLE patients with a high IFN signature were lymphopenic and lymphocyte counts increased following baminercept treatment of RA patients. These data demonstrate a coupling between the lymphotoxin-LIGHT system and IFN production in rheumatoid arthritis. IFN induced retention of lymphocytes within lymphoid tissues is a likely component of the lymphopenia observed in many autoimmune diseases. ClinicalTrials.gov NCT00664716.
Assuntos
Antirreumáticos/farmacologia , Artrite Reumatoide/tratamento farmacológico , Interferons/metabolismo , Heterotrímero de Linfotoxina alfa1 e beta2/metabolismo , Proteínas Recombinantes de Fusão/uso terapêutico , Antirreumáticos/efeitos adversos , Antirreumáticos/uso terapêutico , Artrite Reumatoide/metabolismo , Humanos , Interferons/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Recombinantes de Fusão/farmacologiaRESUMO
SUMMARY: Transcriptional profiling still remains one of the most popular techniques for identifying relevant biomarkers in patient samples. However, heterogeneity in the population leads to poor statistical evidence for selection of most relevant biomarkers to pursue. In particular, human transcriptional differences can be subtle, making it difficult to tease out real differentially expressed biomarkers from the variability inherent in the population. To address this issue, we propose a simple statistical technique that identifies differentially expressed probes in heterogeneous populations as compared with controls. AVAILABILITY AND IMPLEMENTATION: The algorithm has been implemented in Java and available at www.sourceforge.net/projects/probeselect.