Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
Front Big Data ; 5: 787421, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35496379

RESUMO

In this community review report, we discuss applications and techniques for fast machine learning (ML) in science-the concept of integrating powerful ML methods into the real-time experimental data processing loop to accelerate scientific discovery. The material for the report builds on two workshops held by the Fast ML for Science community and covers three main areas: applications for fast ML across a number of scientific domains; techniques for training and implementing performant and resource-efficient ML algorithms; and computing architectures, platforms, and technologies for deploying these algorithms. We also present overlapping challenges across the multiple scientific domains where common solutions can be found. This community report is intended to give plenty of examples and inspiration for scientific discovery through integrated and accelerated ML solutions. This is followed by a high-level overview and organization of technical advances, including an abundance of pointers to source material, which can enable these breakthroughs.

3.
Front Big Data ; 5: 828666, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35402906

RESUMO

The determination of charged particle trajectories in collisions at the CERN Large Hadron Collider (LHC) is an important but challenging problem, especially in the high interaction density conditions expected during the future high-luminosity phase of the LHC (HL-LHC). Graph neural networks (GNNs) are a type of geometric deep learning algorithm that has successfully been applied to this task by embedding tracker data as a graph-nodes represent hits, while edges represent possible track segments-and classifying the edges as true or fake track segments. However, their study in hardware- or software-based trigger applications has been limited due to their large computational cost. In this paper, we introduce an automated translation workflow, integrated into a broader tool called hls4ml, for converting GNNs into firmware for field-programmable gate arrays (FPGAs). We use this translation tool to implement GNNs for charged particle tracking, trained using the TrackML challenge dataset, on FPGAs with designs targeting different graph sizes, task complexites, and latency/throughput requirements. This work could enable the inclusion of charged particle tracking GNNs at the trigger level for HL-LHC experiments.

4.
AI Ethics ; 1(2): 131-138, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34790946

RESUMO

The recent incidents involving Dr. Timnit Gebru, Dr. Margaret Mitchell, and Google have triggered an important discussion emblematic of issues arising from the practice of AI Ethics research. We offer this paper and its bibliography as a resource to the global community of AI Ethics Researchers who argue for the protection and freedom of this research community. Corporate, as well as academic research settings, involve responsibility, duties, dissent, and conflicts of interest. This article is meant to provide a reference point at the beginning of this decade regarding matters of consensus and disagreement on how to enact AI Ethics for the good of our institutions, society, and individuals. We have herein identified issues that arise at the intersection of information technology, socially encoded behaviors, and biases, and individual researchers' work and responsibilities. We revisit some of the most pressing problems with AI decision-making and examine the difficult relationships between corporate interests and the early years of AI Ethics research. We propose several possible actions we can take collectively to support researchers throughout the field of AI Ethics, especially those from marginalized groups who may experience even more barriers in speaking out and having their research amplified. We promote the global community of AI Ethics researchers and the evolution of standards accepted in our profession guiding a technological future that makes life better for all.

5.
Comput Softw Big Sci ; 5(1): 22, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34642648

RESUMO

The long-term sustainability of the high-energy physics (HEP) research software ecosystem is essential to the field. With new facilities and upgrades coming online throughout the 2020s, this will only become increasingly important. Meeting the sustainability challenge requires a workforce with a combination of HEP domain knowledge and advanced software skills. The required software skills fall into three broad groups. The first is fundamental and generic software engineering (e.g., Unix, version control, C++, and continuous integration). The second is knowledge of domain-specific HEP packages and practices (e.g., the ROOT data format and analysis framework). The third is more advanced knowledge involving specialized techniques, including parallel programming, machine learning and data science tools, and techniques to maintain software projects at all scales. This paper discusses the collective software training program in HEP led by the HEP Software Foundation (HSF) and the Institute for Research and Innovation in Software in HEP (IRIS-HEP). The program equips participants with an array of software skills that serve as ingredients for the solution of HEP computing challenges. Beyond serving the community by ensuring that members are able to pursue research goals, the program serves individuals by providing intellectual capital and transferable skills important to careers in the realm of software and computing, inside or outside HEP.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA