Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cureus ; 14(9): e29273, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36277593

RESUMO

Botulism is a rare neuroparalytic illness caused by Clostridium botulinum that can manifest as a descending flaccid paralysis, progressing from cranial neuropathies to respiratory failure. Wound botulism, constituting a minority of cases, is majorly associated with the injection of black tar heroin (BTH) in the western United States. A patient population of particular concern is pregnant women, who may experience a more severe course due to the physiological changes that occur in pregnancy. Because botulism in pregnancy lacks pathognomic features, physicians should maintain a high clinical suspicion when faced with a pregnant patient with neurological symptoms and a history of BTH use. Here, we report the case of a 25-year-old G3P1A1 female with a history of BTH use who presented with cranial neuropathies and respiratory insufficiency.

2.
Int J Mol Sci ; 23(12)2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35743133

RESUMO

The aim of this study was to determine the role of retrograde signaling (mitochondria to nucleus) in MCF7 breast cancer cells. Therefore, in the present study, MCF7-H and MCF7-J cybrids were produced using the mitochondria from the same H and J individuals that were already used in our non-diseased retinal pigment epithelium (ARPE19) cybrids. MCF7 cybrids were treated with cisplatin and analyzed for cell viability, mitochondrial membrane potential, ROS, and expression levels of genes associated with the cGAS-STING and cancer-related pathways. Results showed that unlike the ARPE19-H and ARPE19-J cybrids, the untreated MCF7-H and MCF7-J cybrids had similar levels of ATP, lactate, and OCR: ECAR ratios. After cisplatin treatment, MCF7-H and MCF7-J cybrids showed similar (a) decreases in cell viability and ROS levels; (b) upregulation of ABCC1, BRCA1 and CDKN1A/P21; and (c) downregulation of EGFR. Cisplatin-treated ARPE19-H and ARPE19-J cybrids showed increased expression of six cGAS-STING pathway genes, while two were increased for MCF7-J cybrids. In summary, the ARPE19-H and ARPE19-J cybrids behave differentially from each other with or without cisplatin. In contrast, the MCF7-H and MCF7-J cybrids had identical metabolic/bioenergetic profiles and cisplatin responses. Our findings suggest that cancer cell nuclei might have a diminished ability to respond to the modulating signaling of the mtDNA that occurs via the cGAS-STING pathway.


Assuntos
Neoplasias da Mama , DNA Mitocondrial , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Cisplatino/metabolismo , Cisplatino/farmacologia , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Feminino , Humanos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Nucleotidiltransferases/metabolismo , Espécies Reativas de Oxigênio/metabolismo
3.
PeerJ ; 8: e9908, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33062421

RESUMO

BACKGROUND: Drug therapy yields different results depending on its recipient population. Cisplatin, a commonly used chemotherapeutic agent, causes different levels of resistance and side effects for different patients, but the mechanism(s) are presently unknown. It has been assumed that this variation is a consequence of differences in nuclear (n) DNA, epigenetics, or some external factor(s). There is accumulating evidence that an individual's mitochondrial (mt) DNA may play a role in their response to medications. Variations within mtDNA can be observed, and an individual's mtDNA can be categorized into haplogroups that are defined by accumulations of single nucleotide polymorphisms (SNPs) representing different ethnic populations. METHODS: The present study was conducted on transmitochondrial cytoplasmic hybrids (cybrids) that possess different maternal-origin haplogroup mtDNA from African (L), Hispanic [A+B], or Asian (D) backgrounds. Cybrids were created by fusing Rho0 ARPE-19 cells (lacking mtDNA) with platelets, which contain numerous mitochondria but no nuclei. These cybrid cells were cultured to passage five, treated with cisplatin, incubated for 48 h, then analyzed for cell metabolic activity (tetrazolium dye (MTT) assay), mitochondrial membrane potential (JC-1 assay), cytotoxicity (lactate dehydrogenase (LDH) assay), and gene expression levels for ALK, BRCA1, EGFR, and ERBB2/HER2. RESULTS: Results indicated that untreated cybrids with varying mtDNA haplogroups had similar relative metabolic activity before cisplatin treatment. When treated with cisplatin, (1) the decline in metabolic activity was greatest in L (27.4%, p < 0.012) < D (24.86%, p = 0.0001) and [A+B] cybrids (24.67%, p = 0.0285) compared to untreated cybrids; (2) mitochondrial membrane potential remained unchanged in all cybrids (3) LDH production varied between cybrids (L >[A+B], p = 0.0270). (4) The expression levels decreased for ALK in L (p < 0.0001) and [A+B] (p = 0.0001) cybrids but not in D cybrids (p = 0.285); and decreased for EGFR in [A+B] cybrids (p = 0.0246) compared to untreated cybrids. CONCLUSION: Our findings suggest that an individual's mtDNA background may be associated with variations in their response to cisplatin treatment, thereby affecting the efficiency and the severity of side effects from the treatment.

4.
Front Oncol ; 9: 640, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31380278

RESUMO

Background: Cisplatin, a powerful antitumor agent, causes formation of DNA adducts, and activation of apoptotic pathways. Presently, cisplatin resistance develops in up to 70% of patients but the underlying molecular mechanism(s) are unclear and there are no markers to determine which patients will become resistant. Mitochondria play a significant role not only in energy metabolism but also retrograde signaling (mitochondria to nucleus) that modulates inflammation, complement, and apoptosis pathways. Maternally inherited mitochondrial (mt) DNA can be classified into haplogroups representing different ethnic populations that have diverse susceptibilities to diseases and medications. Methods: Transmitochondrial cybrids, where all cell lines possess identical nuclear genomes but either the H (Southern European) or J (Northern European) mtDNA haplogroups, were treated with cisplatin and analyzed for differential responses related to viability, oxidative stress, and expression levels of genes associated with cancer, cisplatin-induced nephrotoxicity and resistance, apoptosis and signaling pathways. Results: The cisplatin-treated-J cybrids showed greater loss of cell viability along with lower levels of reactive oxygen species and mitochondrial membrane potential compared to cisplatin-treated-H cybrids. After cisplatin treatment, J cybrids showed increased gene expression of BAX, CASP3, and CYP51A, but lower levels of SFRP1 compared to untreated-J cybrids. The cisplatin-treated-H cybrids had elevated expression of CDKN1A/P21, which has a role in cisplatin toxicity, compared to untreated-H cybrids. The cisplatin-treated H had higher transcription levels of ABCC1, DHRS2/HEP27, and EFEMP1 compared to cisplatin-treated-J cybrids. Conclusions: Cybrid cell lines that contain identical nuclei but either H mtDNA mitochondria or J mtDNA mitochondria respond differently to cisplatin treatments suggesting involvement of the retrograde signaling (from mitochondria to nucleus) in the drug-induced cell death. Varying toxicities and transcription levels of the H vs. J cybrids after cisplatin treatment support the hypothesis that mtDNA variants play a role in the expression of genes affecting resistance and side effects of cisplatin.

5.
Ophthalmic Surg Lasers Imaging Retina ; 49(10): S23-S28, 2018 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-30339264

RESUMO

BACKGROUND AND OBJECTIVE: To evaluate whether brimonidine can prevent cytotoxicity in human retinal pigment epithelial (RPE) and Müller (MIO) cells after exposure to amyloid-beta 1-42 (Aß42). MATERIALS AND METHODS: An in vitro model of geographic atrophy (GA), which is an end-stage complication of age-related macular degeneration (AMD), simulated with the application of Aß42 in cell culture. RPE and MIO cells were pretreated with brimonidine for 6 hours, then exposed to 10µM Aß42 for 24 hours. Several concentrations (one time [1×], two times [2×], and five times [5×]) of brimonidine were used to assess for a dose-related effect. Assays were immediately run following the treatment period. 2',7'-Dichlorofluorescein diacetate was used to assess reactive oxygen species production, the MTT assay was used to assess cell viability, and the JC-1 dye assay was used to assess mitochondrial membrane potential. The main outcome measures were reactive oxygen species (ROS) production, cell viability, and mitochondrial membrane potential (ΔΨm) of RPE and MIO cells following the treatment phase. RESULTS: High-dose (5×) brimonidine was capable of reducing ROS production in RPE and MIO cells with exposure to Aß42. The application of Aß42 alone did not trigger a rise in ROS production. Brimonidine was unable to rescue cell viability and ΔΨm after exposure to Aß42 in both cell cultures. Instead, high-dose (5×) brimonidine appeared to increase the toxicity to cell viability and ΔΨm in cultures exposed to Aß42. However, this was not due to medication toxicity alone, because high-dose (5×) brimonidine without exposure to Aß42 did not affect the cell viability in both cell types. CONCLUSION: Brimonidine may have a role in preventing oxidative cellular injury in AMD. However, this role does not appear to translate into protection against some of the cytotoxic effects observed from this in vitro model of GA. In this cellular model of GA, brimonidine is able to reduce oxidative stress but is unable to rescue cell viability or prevent mitochondrial dysfunction. [Ophthalmic Surg Lasers Imaging Retina. 2018;49:S23-S28.].


Assuntos
Peptídeos beta-Amiloides/efeitos adversos , Tartarato de Brimonidina/farmacologia , Células Ependimogliais/efeitos dos fármacos , Atrofia Geográfica/tratamento farmacológico , Estresse Oxidativo/efeitos dos fármacos , Fragmentos de Peptídeos/efeitos adversos , Epitélio Pigmentado da Retina/efeitos dos fármacos , Agonistas de Receptores Adrenérgicos alfa 2/farmacologia , Adulto , Sobrevivência Celular , Células Cultivadas , Células Ependimogliais/metabolismo , Células Ependimogliais/patologia , Atrofia Geográfica/metabolismo , Atrofia Geográfica/patologia , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Epitélio Pigmentado da Retina/patologia
6.
PLoS One ; 11(8): e0159828, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27486856

RESUMO

PURPOSE: Variations in mitochondrial DNA (mtDNA) and abnormalities in the complement pathways have been implicated in the pathogenesis of age-related macular degeneration (AMD). This study was designed to determine the effects of mtDNA from AMD subjects on the complement pathway. METHODS: Transmitochondrial cybrids were prepared by fusing platelets from AMD and age-matched Normal subjects with Rho0 (lacking mtDNA) human ARPE-19 cells. Quantitative PCR and Western blotting were performed to examine gene and protein expression profiles, respectively, of complement markers in these cybrids. Bioenergetic profiles of Normal and AMD cybrids were examined using the Seahorse XF24 flux analyzer. RESULTS: Significant decreases in the gene and protein expression of complement inhibitors, along with significantly higher levels of complement activators, were found in AMD cybrids compared to Older-Normal cybrids. Seahorse flux data demonstrated that the bioenergetic profiles for Older-Normal and Older-AMD cybrid samples were similar to each other but were lower compared to Young-Normal cybrid samples. CONCLUSION: In summary, since all cybrids had identical nuclei and differed only in mtDNA content, the observed changes in components of complement pathways can be attributed to mtDNA variations in the AMD subjects, suggesting that mitochondrial genome and retrograde signaling play critical roles in this disease. Furthermore, the similar bioenergetic profiles of AMD and Older-Normal cybrids indicate that the signaling between mitochondria and nuclei are probably not via a respiratory pathway.


Assuntos
Via Clássica do Complemento/genética , Proteínas do Sistema Complemento/genética , Células Híbridas/metabolismo , Degeneração Macular/genética , Mitocôndrias/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores/metabolismo , Estudos de Casos e Controles , Células Cultivadas , Proteínas do Sistema Complemento/metabolismo , DNA Mitocondrial/genética , Metabolismo Energético , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Genoma Mitocondrial , Humanos , Degeneração Macular/metabolismo , Masculino , Pessoa de Meia-Idade , Mitocôndrias/metabolismo , Transdução de Sinais/genética
7.
Neurobiol Dis ; 93: 64-77, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27109188

RESUMO

Mitochondrial (mt) DNA haplogroups, defined by specific single nucleotide polymorphism (SNP) patterns, represent populations of diverse geographic origins and have been associated with increased risk or protection of many diseases. The H haplogroup is the most common European haplogroup while the K haplogroup is highly associated with the Ashkenazi Jewish population. Transmitochondrial cybrids (cell lines with identical nuclei, but mtDNA from either H (n=8) or K (n=8) subjects) were analyzed by the Seahorse flux analyzer, quantitative polymerase chain reaction (Q-PCR) and immunohistochemistry (IHC). Cybrids were treated with amyloid-ß peptides and cell viabilities were measured. Other cybrids were demethylated with 5-aza-2'-deoxycytidine (5-aza-dC) and expression levels for APOE and NFkB2 were measured. Results show K cybrids have (a) significantly lower mtDNA copy numbers, (b) higher expression levels for MT-DNA encoded genes critical for oxidative phosphorylation, (c) lower Spare Respiratory Capacity, (d) increased expression of inhibitors of the complement pathway and important inflammasome-related genes; and (e) significantly higher levels of APOE transcription that were independent of methylation status. After exposure to amyloid-ß1-42 peptides (active form), H haplogroup cybrids demonstrated decreased cell viability compared to those treated with amyloid-ß42-1 (inactive form) (p<0.0001), while this was not observed in the K cybrids (p=0.2). K cybrids had significantly higher total global methylation levels and differences in expression levels for two acetylation genes and four methylation genes. Demethylation with 5-aza-dC altered expression levels for NFkB2, while APOE transcription patterns were unchanged. Our findings support the hypothesis that mtDNA-nuclear retrograde signaling may mediate expression levels of APOE, a key factor in many age-related diseases. Future studies will focus on identification of the mitochondrial-nuclear retrograde signaling mechanism(s) contributing to these mtDNA-mediated differences.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Apolipoproteínas E/metabolismo , DNA Mitocondrial/genética , Mitocôndrias/metabolismo , Polimorfismo de Nucleotídeo Único/genética , Adulto , Idoso , Apolipoproteínas E/genética , Núcleo Celular/metabolismo , Feminino , Haplótipos , Humanos , Masculino , Pessoa de Meia-Idade , Fosforilação Oxidativa , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/genética , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA