Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
CPT Pharmacometrics Syst Pharmacol ; 8(10): 759-768, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31420944

RESUMO

Vincristine is a cytotoxic chemotherapeutic agent used as first-line therapy for pediatric acute lymphocytic leukemia. It is cleared by hepatic oxidative metabolism by CYP3A4 and CYP3A5 and via hepatic (biliary) efflux mediated by P-glycoprotein (P-gp) transporter. Bottom-up physiologically based pharmacokinetic (PBPK) models were developed to predict vincristine disposition in pediatric and adult populations. The models incorporated physicochemical properties, metabolism by CYP3A4/5, efflux by P-gp, and intracellular binding to ß-tubulin. The adult and pediatric PBPK models predicted pharmacokinetics (PK) within twofold of the observed PK parameters (area under the curve, terminal half-life, volume of distribution, and clearance). Simulating a higher hypothetical (4.9-fold) pediatric expression of ß-tubulin relative to adult improved predictions of vincristine PKs. To our knowledge, this is the first time that intracellular binding has been incorporated into a pediatric PBPK model. Utilizing this PBPK modeling approach, safe and effective doses of vincristine could be predicted.


Assuntos
Antineoplásicos Fitogênicos/farmacocinética , Citocromo P-450 CYP3A/metabolismo , Tubulina (Proteína)/metabolismo , Vincristina/farmacocinética , Administração Intravenosa , Adulto , Animais , Antineoplásicos Fitogênicos/administração & dosagem , Área Sob a Curva , Linhagem Celular , Criança , Pré-Escolar , Cães , Humanos , Lactente , Recém-Nascido , Pessoa de Meia-Idade , Modelos Biológicos , Vincristina/administração & dosagem , Adulto Jovem
2.
Br J Pharmacol ; 176(15): 2724-2735, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31032880

RESUMO

BACKGROUND AND PURPOSE: It has been extensively reported that the leading anti-diabetic drug, metformin, exerts significant anticancer effects. This hydrophilic, cationic drug requires cation transporters for cellular entry where it activates its intracellular target, the AMPK signalling pathway. However, clinical results on metformin therapy (used at antidiabetic doses) for breast cancer are ambiguous. It is likely that the antidiabetic dose is inadequate in patients that have breast tumours with low cation transporter expression, resulting in non-responsiveness to the drug. We postulate that cation transporter expression and metformin dose are key determinants in its antitumour efficacy in breast cancer. EXPERIMENTAL APPROACH: Antitumour efficacy of metformin was compared between low cation transporter-expressing MCF-7 breast tumours and MCF-7 tumours overexpressing organic cation transporter 3 (OCT3-MCF7). A dose-response relationship of metformin in combination with standard-of-care paclitaxel (for oestrogen receptor-positive MCF-7 breast tumours) or carboplatin (for triple-negative MDA-MB-468 breast tumours) was investigated in xenograft mice. KEY RESULTS: Metformin had greater efficacy against tumours with higher cation transporter expression, as observed in OCT3-MCF7 versus MCF-7 tumours and MDA-MB-468 versus MCF-7 tumours. In MCF-7 tumours, a threefold higher metformin dose was required to achieve intratumoural exposure that was comparable to exposure in MDA-MB-468 tumours and enhance antitumour efficacy of standard-of-care in MCF-7 tumours versus MDA-MB-468 tumours. Antitumour efficacy correlated with intratumoural AMPK activation and metformin concentration. CONCLUSIONS AND IMPLICATIONS: An efficacious metformin dose for breast cancer varies among tumour subtypes based on cation transporter expression, which provides a useful guide for dose selection.


Assuntos
Antineoplásicos/uso terapêutico , Hipoglicemiantes/uso terapêutico , Neoplasias Mamárias Experimentais/tratamento farmacológico , Metformina/uso terapêutico , Proteínas de Transporte de Cátions Orgânicos/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Antineoplásicos/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Carboplatina/uso terapêutico , Linhagem Celular Tumoral , Sinergismo Farmacológico , Feminino , Humanos , Hipoglicemiantes/farmacologia , Neoplasias Mamárias Experimentais/genética , Neoplasias Mamárias Experimentais/metabolismo , Neoplasias Mamárias Experimentais/patologia , Metformina/farmacologia , Camundongos Nus , Paclitaxel/uso terapêutico , Carga Tumoral/efeitos dos fármacos
3.
Pediatr Res ; 83(2): 527-535, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28922349

RESUMO

BackgroundAge-dependent differences in pharmacokinetics exist for metabolically cleared medications. Differential contributions in the cytochrome P450 3A (CYP3A), CYP2C, and flavin-containing monooxygenases (FMOs) families have an important role in the metabolic clearance of a large number of drugs administered to children.MethodsUnlike previous semiquantitative characterization of age-dependent changes in the expression of genes and proteins (western blot analysis), this study quantifies both gene and absolute protein expression in the same fetal, pediatric, and adult hepatic tissue. Expression was then correlated with the corresponding functional activities in the same samples.ResultsCYP3A and FMO families showed a distinct switch from fetal (CYP3A7 and FMO1) to adult isoforms (CYP3A4 and FMO3) at birth, whereas CYP2C9 showed a linear maturation from birth into adulthood. In contrast, analysis of CYP2C19 revealed higher expression and catalytic efficiency in pediatric samples compared with that in fetal and adult samples. Further, CYP3A and FMO enzymes exhibited an unexpectedly higher functional activity in fetal samples not entirely explained by protein expression.ConclusionThese surprising findings suggest that CYP and FMO enzymes may encounter development-related differences in their microenvironments that can influence the enzyme activity in addition to protein expression levels.


Assuntos
Fatores Etários , Sistema Enzimático do Citocromo P-450/metabolismo , Dinitrocresóis/metabolismo , Adulto , Criança , Pré-Escolar , Citocromo P-450 CYP2C9/metabolismo , Citocromo P-450 CYP3A/metabolismo , Perfilação da Expressão Gênica , Regulação Enzimológica da Expressão Gênica , Humanos , Lactente , Recém-Nascido , Fígado/embriologia , Fígado/metabolismo , Microssomos Hepáticos/metabolismo , Pessoa de Meia-Idade , Oxirredução , Oxigenases/metabolismo , Proteínas Recombinantes/metabolismo
4.
Drug Metab Dispos ; 44(7): 975-83, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26839369

RESUMO

Flavin-containing monooxygenases (FMOs) have a significant role in the metabolism of small molecule pharmaceuticals. Among the five human FMOs, FMO1, FMO3, and FMO5 are the most relevant to hepatic drug metabolism. Although age-dependent hepatic protein expression, based on immunoquantification, has been reported previously for FMO1 and FMO3, there is very little information on hepatic FMO5 protein expression. To overcome the limitations of immunoquantification, an ultra-performance liquid chromatography (UPLC)-multiple reaction monitoring (MRM)-based targeted quantitative proteomic method was developed and optimized for the quantification of FMO1, FMO3, and FMO5 in human liver microsomes (HLM). A post-in silico product ion screening process was incorporated to verify LC-MRM detection of potential signature peptides before their synthesis. The developed method was validated by correlating marker substrate activity and protein expression in a panel of adult individual donor HLM (age 39-67 years). The mean (range) protein expression of FMO3 and FMO5 was 46 (26-65) pmol/mg HLM protein and 27 (11.5-49) pmol/mg HLM protein, respectively. To demonstrate quantification of FMO1, a panel of fetal individual donor HLM (gestational age 14-20 weeks) was analyzed. The mean (range) FMO1 protein expression was 7.0 (4.9-9.7) pmol/mg HLM protein. Furthermore, the ontogenetic protein expression of FMO5 was evaluated in fetal, pediatric, and adult HLM. The quantification of FMO proteins also was compared using two different calibration standards, recombinant proteins versus synthetic signature peptides, to assess the ratio between holoprotein versus total protein. In conclusion, a UPLC-MRM-based targeted quantitative proteomic method has been developed for the quantification of FMO enzymes in HLM.


Assuntos
Cromatografia Líquida , Fígado/enzimologia , Microssomos Hepáticos/enzimologia , Oxigenases/metabolismo , Proteômica/métodos , Adulto , Fatores Etários , Idoso , Calibragem , Criança , Cromatografia Líquida/normas , Idade Gestacional , Humanos , Fígado/embriologia , Pessoa de Meia-Idade , Proteômica/normas , Padrões de Referência , Reprodutibilidade dos Testes , Espectrometria de Massas em Tandem
5.
J Pharm Sci ; 105(2): 484-496, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26869413

RESUMO

Transport proteins in intestinal epithelial cells facilitate absorption of nutrients/compounds that are organic anions, cations, and zwitterions. For two decades, we have studied intestinal absorption and transport of hydrophilic ionic compounds, with specific focus on transport properties of organic cations and their interactions with intestinal transporters and tight junction proteins. Our data reveal how complex interactions between a compound and transporters in intestinal apical/basolateral (BL) membranes and tight junction proteins define oral absorption, and that the BL membrane lacks an efflux transporter that can transport positively charged compounds. Based on our investigations of transport mechanisms of zwitterionic, anionic, and cationic compounds, we postulate that physicochemical properties of these ionic species, in relation to the intestinal micro pH environment, have exerted evolutionary pressure for development of transporters that can handle apical uptake/efflux of all 3 ionic species and BL efflux of anions and zwitterions, but such evolutionary pressure is lacking for development of a BL efflux transporter for cationic compounds. This review provides an overview of intestinal uptake/efflux transporters and describes our studies on intestinal transport of cationic, anionic, and zwitterionic drugs that led to hypothesize that there are no cation-selective BL efflux transporters in the intestine.


Assuntos
Absorção Intestinal/fisiologia , Mucosa Intestinal/metabolismo , Metformina/metabolismo , Proteínas de Transporte de Cátions Orgânicos/metabolismo , Animais , Humanos , Absorção Intestinal/efeitos dos fármacos , Mucosa Intestinal/efeitos dos fármacos , Intestinos/efeitos dos fármacos , Metformina/administração & dosagem
7.
Int J Cancer ; 138(9): 2281-92, 2016 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-26669511

RESUMO

The antidiabetic drug metformin exerts antineoplastic effects against breast cancer and other cancers. One mechanism by which metformin is believed to exert its anticancer effect involves activation of its intracellular target, adenosine monophosphate-activated protein kinase (AMPK), which is also implicated in the antidiabetic effect of metformin. It is proposed that in cancer cells, AMPK activation leads to inhibition of the mammalian target of rapamycin (mTOR) and the downstream pS6K that regulates cell proliferation. Due to its hydrophilic and cationic nature, metformin requires cation-selective transporters to enter cells and activate AMPK. This study demonstrates that expression levels of cation-selective transporters correlate with the antiproliferative and antitumor efficacy of metformin in breast cancer. Metformin uptake and antiproliferative activity were compared between a cation-selective transporter-deficient human breast cancer cell line, BT-20, and a BT-20 cell line that was engineered to overexpress organic cation transporter 3 (OCT3), a representative of cation-selective transporters and a predominant transporter in human breast tumors. Metformin uptake was minimal in BT-20 cells, but increased by >13-fold in OCT3-BT20 cells, and its antiproliferative potency was >4-fold in OCT3-BT20 versus BT-20 cells. This increase in antiproliferative activity was associated with greater AMPK phosphorylation and decreased pS6K phosphorylation in OCT3-BT20 cells. In vitro data were corroborated by in vivo observations of significantly greater antitumor efficacy of metformin in xenograft mice bearing OCT3-overexpressing tumors versus low transporter-expressing wildtype tumors. Collectively, these findings establish a clear relationship between cation-selective transporter expression, the AMPK-mTOR-pS6K signaling cascade, and the antiproliferative activity of metformin in breast cancer.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Antineoplásicos/farmacologia , Neoplasias da Mama/patologia , Metformina/farmacologia , Transdução de Sinais/efeitos dos fármacos , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Feminino , Neoplasias Mamárias Experimentais/tratamento farmacológico , Neoplasias Mamárias Experimentais/patologia , Camundongos , Camundongos Nus , Proteínas de Transporte de Cátions Orgânicos , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
9.
J Pharmacol Exp Ther ; 352(3): 519-28, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25563903

RESUMO

Metformin is the frontline therapy for type II diabetes mellitus. The oral bioavailability of metformin is unexpectedly high, between 40 and 60%, given its hydrophilicity and positive charge at all physiologic pH values. Previous studies in Caco-2 cell monolayers, a cellular model of the human intestinal epithelium, showed that during absorptive transport metformin is taken up into the cells via transporters in the apical (AP) membrane; however, predominant transport to the basolateral (BL) side occurs via the paracellular route because intracellular metformin cannot egress across the BL membrane. Furthermore, these studies have suggested that the AP transporters can contribute to intestinal accumulation and absorption of metformin. Transporter-specific inhibitors as well as a novel approach involving a cocktail of transporter inhibitors with overlapping selectivity were used to identify the AP transporters that mediate metformin uptake in Caco-2 cell monolayers; furthermore, the relative contributions of these transporters in metformin AP uptake were also determined. The organic cation transporter 1, plasma membrane monoamine transporter (PMAT), serotonin reuptake transporter, and choline high-affinity transporter contributed to approximately 25%, 20%, 20%, and 15%, respectively, of the AP uptake of metformin. PMAT-knockdown Caco-2 cells were constructed to confirm the contribution of PMAT in metformin AP uptake because a PMAT-selective inhibitor is not available. The identification of four intestinal transporters that contribute to AP uptake and potentially intestinal absorption of metformin is a significant novel finding that can influence our understanding of metformin pharmacology and intestinal drug-drug interactions involving this highly prescribed drug.


Assuntos
Sistemas de Transporte de Aminoácidos Básicos/metabolismo , Hipoglicemiantes/metabolismo , Metformina/metabolismo , Transporte Biológico/fisiologia , Células CACO-2 , Proteínas de Transporte de Nucleosídeo Equilibrativas/metabolismo , Células HEK293 , Humanos , Proteínas de Membrana Transportadoras/metabolismo , Transportador 1 de Cátions Orgânicos/metabolismo , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo
10.
J Am Pharm Assoc (2003) ; 54(5): 552-5, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25216886

RESUMO

OBJECTIVE: The objective of this commentary is to explore the potential role of the pharmacist in the field of global health by understanding the definition of global health and how it can be applied to the profession of pharmacy. SUMMARY: While the role of the pharmacist in public health has been defined, the literature is limited with respect to the role of the pharmacist in global health. It is suggested that the "global" in global health should refer to the scope of a problem and not necessarily the geographic location. Through this lens, pharmacists have the opportunity to play an important role in both public health and global health. In particular, pharmacists can look at the varied global health careers established in medicine and use this as a framework to understand the potential role of the pharmacist within global health practice and program delivery, research, and policy. CONCLUSIONS: To further define the role of the pharmacist in global health, pharmacists may have to change their perception of what services they can provide and where these services can be applied.


Assuntos
Saúde Global , Assistência Farmacêutica/organização & administração , Farmacêuticos/organização & administração , Atitude do Pessoal de Saúde , Atenção à Saúde/organização & administração , Política de Saúde , Humanos , Papel Profissional , Saúde Pública
11.
Clin Pharmacokinet ; 53(12): 1171-82, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25245942

RESUMO

BACKGROUND AND OBJECTIVES: The effect of ontogeny in drug-metabolizing enzymes on pediatric pharmacokinetics is poorly predicted. Voriconazole, a potent antifungal, is cleared predominantly via oxidative metabolism and exhibits vastly different pharmacokinetics between adults and children. A physiologically based pharmacokinetic (PBPK) model was developed integrating hepatic in vitro metabolism data with physiologic parameters to predict pharmacokinetic parameters of voriconazole in adult and pediatric populations. METHODS: Adult and pediatric PBPK models integrated voriconazole physicochemical properties with hepatic in vitro data into the models. Simulated populations contained 100 patients (10 trials with 10 patients each). Trial design and dosing was based on published clinical trials. Simulations yielded pharmacokinetic parameters that were compared against published values and visual predictive checks were employed to validate models. RESULTS: All adult models and the pediatric intravenous model predicted pharmacokinetic parameters that corresponded with observed values within a 20% prediction error, whereas the pediatric oral model predicted an oral bioavailability twofold higher than observed ranges. After incorporating intestinal first-pass metabolism into the model, the prediction of oral bioavailability improved substantially, suggesting that voriconazole is subject to intestinal first-pass metabolism in children, but not in adults. CONCLUSIONS: The PBPK approach used in this study suggests a mechanistic reason for differences in bioavailability between adults and children. If verified, this would be the first example of differential first-pass metabolism in children and adults.


Assuntos
Antifúngicos/farmacocinética , Mucosa Intestinal/metabolismo , Modelos Biológicos , Voriconazol/farmacocinética , Adulto , Antifúngicos/sangue , Disponibilidade Biológica , Criança , Pré-Escolar , Feminino , Voluntários Saudáveis , Humanos , Masculino , Reprodutibilidade dos Testes , Voriconazol/sangue
12.
Drug Metab Dispos ; 41(9): 1695-702, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23821186

RESUMO

Recent studies showed that P-glycoprotein (P-gp) increases the portal bioavailability (FG) of loperamide by sparing its intestinal first-pass metabolism. Loperamide is a drug whose oral absorption is strongly attenuated by intestinal P-gp-mediated efflux and first-pass metabolism by cytochrome P450 3A (CYP3A). Here the effect of the interplay of P-gp and Cyp3a in modulating intestinal first-pass metabolism and absorption was investigated for another Cyp3a/P-gp dual substrate amprenavir, which is less efficiently effluxed by P-gp than loperamide. After oral administration of amprenavir, the portal concentrations and FG of amprenavir were approximately equal in P-gp competent and P-gp deficient mice. Mechanistic studies on the effect of P-gp on Cyp3a-mediated metabolism of amprenavir using intestinal tissue from P-gp competent and P-gp deficient mice (Ussing-type diffusion chamber) revealed that P-gp-mediated efflux caused only a slight reduction of oxidative metabolism of amprenavir. Studies in which portal concentrations and FG were measured in P-gp competent and P-gp deficient mice whose cytochrome P450 (P450) enzymes were either intact or inactivated showed that intestinal first-pass metabolism attenuates the oral absorption of amprenavir by approximately 10-fold, whereas P-gp efflux has a relatively small effect (approximately 2-fold) in attenuating the intestinal absorption. Cumulatively, these studies demonstrate that P-gp has little influence on the intestinal first-pass metabolism and FG of amprenavir and that intestinal P450-mediated metabolism plays the dominant role in attenuating the oral absorption of this drug.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Carbamatos/metabolismo , Citocromo P-450 CYP3A/metabolismo , Absorção Intestinal/fisiologia , Mucosa Intestinal/metabolismo , Intestinos/enzimologia , Sulfonamidas/metabolismo , Animais , Disponibilidade Biológica , Transporte Biológico , Furanos , Masculino , Camundongos , Permeabilidade
13.
Mol Pharmacol ; 84(2): 182-9, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23680637

RESUMO

Organic cation transporters (OCTs) are members of the solute carrier 22 family of transporter proteins that are involved in absorption, distribution, and excretion of organic cations. OCT3 is localized in the apical (AP) membrane of enterocytes, but the literature is ambiguous about OCT1 (mOct1) localization, with some evidence suggesting a basolateral (BL) localization in human and mouse enterocytes. This is contrary to our preliminary findings showing AP localization of OCT1 in Caco-2 cell monolayers, an established model of human intestinal epithelium. Therefore, this study aims at determining the localization of OCT1 (mOct1) in Caco-2 cells, and human and mouse enterocytes. Functional studies using OCT1-specific substrate pentamidine showed transporter-mediated AP but not BL uptake in Caco-2 cells and human and mouse intestinal tissues. OCT1 inhibition decreased AP uptake of pentamidine by ∼50% in all three systems with no effect on BL uptake. A short hairpin RNA-mediated OCT1 knockdown in Caco-2 cells decreased AP uptake of pentamidine by ∼50% but did not alter BL uptake. Immunostaining and confocal microscopy in all three systems confirmed AP localization of OCT1 (mOct1). Our studies unequivocally show AP membrane localization of OCT1 (mOct1) in Caco-2 cells and human and mouse intestine. These results are highly significant as they will require reinterpretation of previous drug disposition and drug-drug interaction studies where conclusions were drawn assuming BL localization of OCT1 in enterocytes. Most importantly, these results will require revision of the regulatory guidance for industry in the United States and elsewhere because it has stated that OCT1 is basolaterally localized in enterocytes.


Assuntos
Enterócitos/metabolismo , Mucosa Intestinal/metabolismo , Transportador 1 de Cátions Orgânicos/metabolismo , Animais , Células CACO-2 , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Transporte Proteico
14.
Drug Metab Dispos ; 41(6): 1179-86, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23482500

RESUMO

Sorafenib is an orally active tyrosine kinase inhibitor used in the treatment of renal and hepatocellular carcinoma. This study was designed to establish whether transport proteins are involved in the hepatic uptake of sorafenib and to determine the extent of biliary excretion of sorafenib and its metabolites in human hepatocytes. Initial uptake was assessed in freshly isolated, suspended human hepatocytes in the presence of inhibitors and modulators. [(14)C]Sorafenib (1 µM) uptake at 4°C was reduced by about 61-63% of the uptake at 37°C, suggesting a high degree of passive diffusion. Hepatocyte uptake of [(14)C]sorafenib was not Na(+) dependent or influenced by the organic anion transporter 2 inhibitor ketoprofen. However, initial [(14)C]sorafenib hepatocyte uptake was reduced by 46 and 30% compared with control values in the presence of the organic anion transporting polypeptide inhibitor rifamycin SV and the organic cation transporter (OCT) inhibitor decynium 22, respectively. [(14)C]Sorafenib (0.5-5 µM) uptake was significantly higher in hOCT1-transfected Chinese hamster ovary cells compared with mock cells, and inhibited by the general OCT inhibitor, 1-methyl-4-phenylpryidinium. OCT1-mediated uptake was saturable with a Michaelis-Menten constant of 3.80 ± 2.53 µM and a V(max) of 116 ± 42 pmol/mg/min. The biliary excretion index and in vitro biliary clearance of sorafenib (1 µM) in sandwich-cultured human hepatocytes were low (∼11% and 11 ml/min/kg, respectively). Results suggest that sorafenib uptake in human hepatocytes occurs via passive diffusion, by OCT1, and by organic anion transporting polypeptide(s). Sorafenib undergoes modest biliary excretion, predominantly as a glucuronide conjugate(s).


Assuntos
Hepatócitos/metabolismo , Niacinamida/análogos & derivados , Compostos de Fenilureia/metabolismo , Inibidores de Proteínas Quinases/metabolismo , Adulto , Animais , Células CHO , Células Cultivadas , Cricetinae , Cricetulus , Feminino , Hepatócitos/efeitos dos fármacos , Humanos , Masculino , Pessoa de Meia-Idade , Niacinamida/metabolismo , Niacinamida/farmacologia , Compostos de Fenilureia/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Sorafenibe
15.
Drug Metab Dispos ; 41(3): 642-50, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23288866

RESUMO

P-glycoprotein (P-gp) and CYP3A (cytochrome P450 3A, generally; Cyp3a, rodent enzyme) in the intestine can attenuate absorption of orally administered drugs. While some suggest that P-gp enhances intestinal metabolism by CYP3A/Cyp3a during absorption of a dual substrate, others suggest that P-gp reduces the metabolism in the intestine when substrates are at subsaturating concentrations. Hence, to elucidate the cellular mechanisms that can address these divergent reports, we studied intestinal absorption of the dual substrate loperamide in portal vein-cannulated P-gp-competent and P-gp-deficient mice. These studies showed that at low doses of loperamide, which produced intestinal concentrations near the apparent K(m) for oxidative metabolism, the bioavailability across the intestine (F(G)) was 6-fold greater in the P-gp-competent mice than in P-gp-deficient mice. The higher F(G) of loperamide in the presence of P-gp was attributed to lower loperamide intestinal metabolism. However, at high doses of loperamide, the sparing of first-pass metabolism by P-gp was balanced against the attenuation of absorption by apical efflux, resulting in no net effect on F(G). In vitro studies with intestinal tissue from P-gp-competent and -deficient mice confirmed that P-gp reduced the metabolic rate of loperamide during absorptive flux at concentrations near K(m) but had little effect on metabolism at higher (saturating) concentrations. Further, studies in which Cyp3a was chemically inactivated by aminobenzotriazole in P-gp-competent and -deficient mice, showed that P-gp and Cyp3a individually attenuated F(G) by 8-fold and 70-fold, respectively. These results confirmed that P-gp effectively protects loperamide at low doses from intestinal first-pass metabolism during intestinal absorption.


Assuntos
Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Absorção Intestinal , Mucosa Intestinal/metabolismo , Loperamida/farmacocinética , Subfamília B de Transportador de Cassetes de Ligação de ATP/deficiência , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Administração Oral , Animais , Disponibilidade Biológica , Citocromo P-450 CYP3A/metabolismo , Inibidores do Citocromo P-450 CYP3A , Inibidores Enzimáticos/farmacologia , Absorção Intestinal/efeitos dos fármacos , Intestinos/efeitos dos fármacos , Loperamida/administração & dosagem , Loperamida/sangue , Masculino , Camundongos , Camundongos Knockout , Modelos Biológicos , Modelos Estatísticos , Permeabilidade , Veia Porta , Triazóis/farmacologia
16.
Drug Metab Dispos ; 41(2): 518-28, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23223498

RESUMO

DB868 [2,5-bis [5-(N-methoxyamidino)-2-pyridyl] furan], a prodrug of the diamidine DB829 [2,5-bis(5-amidino-2-pyridyl) furan], has demonstrated efficacy in murine models of human African trypanosomiasis. A cross-species evaluation of prodrug bioconversion to the active drug is required to predict the disposition of prodrug, metabolites, and active drug in humans. The phase I biotransformation of DB868 was elucidated using liver microsomes and sandwich-cultured hepatocytes from humans and rats. All systems produced four NADPH-dependent metabolites via O-demethylation (M1, M2) and N-dehydroxylation (M3, M4). Compartmental kinetic modeling of the DB868 metabolic pathway suggested an unusual N-demethoxylation reaction that was supported experimentally. A unienzyme Michaelis-Menten model described the kinetics of M1 formation by human liver microsomes (HLMs) (K(m), 11 µM; V(max), 340 pmol/min/mg), whereas a two-enzyme model described the kinetics of M1 formation by rat liver microsomes (RLMs) (K(m1), 0.5 µM; V(max1), 12 pmol/min/mg; K(m2), 27 µM; V(max2), 70 pmol/min/mg). Human recombinant CYP1A2, CYP3A4, and CYP4F2, rat recombinant Cyp1a2 and Cyp2d2, and rat purified Cyp4f1 catalyzed M1 formation. M2 formation by HLMs exhibited allosteric kinetics (S(50), 18 µM; V(max), 180 pmol/mg), whereas M2 formation by RLMs was negligible. Recombinant CYP1A2/Cyp1a2 catalyzed M2 formation. DB829 was detected in trace amounts in HLMs at the end of the 180-min incubation and was detected readily in sandwich-cultured hepatocytes from both species throughout the 24-h incubation. These studies demonstrated that DB868 biotransformation to DB829 is conserved between humans and rats. An improved understanding of species differences in the kinetics of DB829 formation would facilitate preclinical development of a promising antitrypanosomal prodrug.


Assuntos
Sistema Nervoso Central/efeitos dos fármacos , Sistema Enzimático do Citocromo P-450/metabolismo , Fígado/enzimologia , Modelos Biológicos , Pró-Fármacos/metabolismo , Pró-Fármacos/farmacologia , Tripanossomicidas/metabolismo , Tripanossomicidas/farmacologia , Animais , Biotransformação , Células Cultivadas , Remoção de Radical Alquila , Feminino , Hepatócitos/enzimologia , Humanos , Hidroxilação , Isoenzimas , Cinética , Masculino , Metilação , Microssomos Hepáticos/enzimologia , Estrutura Molecular , Oxirredução , Pró-Fármacos/química , Ratos , Proteínas Recombinantes/metabolismo , Especificidade da Espécie , Tripanossomicidas/química
17.
Mol Pharm ; 8(5): 1677-86, 2011 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-21780830

RESUMO

Fexofenadine is a nonsedative antihistamine that exhibits good oral bioavailability despite its zwitterionic chemical structure and efflux by P-gp. Evidence exists that multiple uptake and efflux transporters play a role in hepatic disposition of fexofenadine. However, the roles of specific transporters and their interrelationship in intestinal absorption of this drug are unclear. This study was designed to elucidate vectorial absorptive transport of fexofenadine across Caco-2 cells involving specific apical uptake and efflux transporters as well as basolateral efflux transporters. Studies with cellular models expressing single transporters showed that OATP2B1 expression stimulated uptake of fexofenadine at pH 6.0. Apical uptake of fexofenadine into Caco-2 cells was decreased by 45% by pretreatment with estrone 3-sulfate, an OATP inhibitor, at pH 6.0 but not at pH 7.4, indicating that OATP2B1 mediates apical uptake of fexofenadine into these cells. Examination of fexofenadine efflux from preloaded Caco-2 cells in the presence or absence of (i) the MRP inhibitor MK-571 and (ii) the P-gp inhibitor GW918 showed that apical efflux is predominantly mediated by P-gp, with a small contribution by MRP2, whereas basolateral efflux is predominantly mediated by MRP3. These results also showed that while OSTαß is functionally active in the basolateral membrane of Caco-2 cells, it does not play a role in the export of fexofenadine. MK-571 decreased the absorptive transport of fexofenadine by 17%. However, the decrease in absorptive transport by MK-571 was 42% when P-gp was inhibited by GW918. The results provide a novel insight into a vectorial transport system mainly consisting of apical OATP2B1 and basolateral MRP3 that may play an important role in delivering hydrophilic anionic and zwitterionic drugs such as pravastatin and fexofenadine into systemic circulation upon oral administration.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Enterócitos/metabolismo , Antagonistas não Sedativos dos Receptores H1 da Histamina/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Transportadores de Ânions Orgânicos/metabolismo , Terfenadina/análogos & derivados , Subfamília B de Transportador de Cassetes de Ligação de ATP , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/antagonistas & inibidores , Animais , Células CACO-2 , Linhagem Celular , Polaridade Celular , Cães , Enterócitos/citologia , Enterócitos/efeitos dos fármacos , Humanos , Absorção Intestinal/efeitos dos fármacos , Túbulos Renais Distais/efeitos dos fármacos , Túbulos Renais Distais/metabolismo , Moduladores de Transporte de Membrana/farmacologia , Modelos Biológicos , Proteína 2 Associada à Farmacorresistência Múltipla , Proteínas Associadas à Resistência a Múltiplos Medicamentos/antagonistas & inibidores , Transportadores de Ânions Orgânicos/antagonistas & inibidores , Transportadores de Ânions Orgânicos/genética , Pró-Fármacos/metabolismo , Transporte Proteico , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Terfenadina/metabolismo
18.
Biopharm Drug Dispos ; 32(4): 222-32, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21449041

RESUMO

Micafungin, a new echinocandin antifungal agent, has been used widely for the treatment of various fungal infections in human populations. Micafungin is predominantly cleared by biliary excretion and it binds extensively to plasma proteins. Micafungin body weight-adjusted clearance is higher in neonates than in adults, but the mechanisms underlying this difference are not understood. Previous work had revealed the roles of sinusoidal uptake (Na(+) -taurocholate co-transporting peptide, NTCP; organic anion transporting polypeptide, OATP) as well as canalicular efflux (bile salt export pump, BSEP; breast cancer resistance protein, BCRP) transporters in micafungin hepatobiliary elimination. In the present study, the relative protein expression of hepatic transporters was compared between liver homogenates from neonates and adults. Also, the extent of micafungin binding to serum from neonates and adults was measured in vitro. The results indicate that relative expression levels of NTCP, OATP1B1/3, BSEP, BCRP and MRP3 were similar in neonates and in adults. However, the micafungin fraction unbound (f(u) ) in neonatal serum was about 8-fold higher than in the adult serum (0.033±0.012 versus 0.004±0.001, respectively). While there was no evidence for different intrinsic hepatobiliary clearance of micafungin between neonates and adults, our data suggest that age-dependent serum protein binding of micafungin is responsible for its higher clearance in neonates compared with adults.


Assuntos
Antifúngicos/farmacocinética , Equinocandinas/farmacocinética , Lipopeptídeos/farmacocinética , Adulto , Fatores Etários , Antifúngicos/sangue , Antifúngicos/química , Antifúngicos/uso terapêutico , Sistema Biliar/fisiologia , Proteínas Sanguíneas/metabolismo , Equinocandinas/sangue , Equinocandinas/química , Equinocandinas/uso terapêutico , Humanos , Recém-Nascido , Lipopeptídeos/sangue , Lipopeptídeos/química , Lipopeptídeos/uso terapêutico , Fígado/metabolismo , Micafungina , Transportadores de Ânions Orgânicos/metabolismo , Ligação Proteica , Simportadores/efeitos dos fármacos , Simportadores/metabolismo
19.
J Biol Chem ; 286(14): 12407-16, 2011 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-21266572

RESUMO

Phospholipase C (PLC) enzymes are an important family of regulatory proteins involved in numerous cellular functions, primarily through hydrolysis of the polar head group from inositol-containing membrane phospholipids. U73122 (1-(6-((17ß-3-methoxyestra-1,3,5(10)-trien-17-yl)amino)hexyl)-1H-pyrrole-2,5-dione), one of only a few small molecules reported to inhibit the activity of these enzymes, has been broadly applied as a pharmacological tool to implicate PLCs in diverse experimental phenotypes. The purpose of this study was to develop a better understanding of molecular interactions between U73122 and PLCs. Hence, the effects of U73122 on human PLCß3 (hPLCß3) were evaluated in a cell-free micellar system. Surprisingly, U73122 increased the activity of hPLCß3 in a concentration- and time-dependent manner; up to an 8-fold increase in enzyme activity was observed with an EC50=13.6±5 µm. Activation of hPLCß3 by U73122 required covalent modification of cysteines as evidenced by the observation that enzyme activation was attenuated by thiol-containing nucleophiles, l-cysteine and glutathione. Mass spectrometric analysis confirmed covalent reaction with U73122 at eight cysteines, although maximum activation was achieved without complete alkylation; the modified residues were identified by LC/MS/MS peptide sequencing. Interestingly, U73122 (10 µm) also activated hPLCγ1 (>10-fold) and hPLCß2 (∼2-fold); PLCδ1 was neither activated nor inhibited. Therefore, in contrast to its reported inhibitory potential, U73122 failed to inhibit several purified PLCs. Most of these PLCs were directly activated by U73122, and a simple mechanism for the activation is proposed. These results strongly suggest a need to re-evaluate the use of U73122 as a general inhibitor of PLC isozymes.


Assuntos
Estrenos/farmacologia , Inibidores de Fosfodiesterase/farmacologia , Pirrolidinonas/farmacologia , Fosfolipases Tipo C/metabolismo , Sequência de Aminoácidos , Ativação Enzimática/efeitos dos fármacos , Estrenos/química , Humanos , Dados de Sequência Molecular , Inibidores de Fosfodiesterase/química , Pirrolidinonas/química , Fosfolipases Tipo C/química
20.
Drug Metab Dispos ; 38(10): 1848-56, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20606004

RESUMO

The purpose of the present study was to elucidate the transport mechanisms responsible for elimination of micafungin, a new semisynthetic echinocandin antifungal agent, which is predominantly cleared by biliary excretion in humans and rats. In vitro studies using sandwich-cultured rat and human hepatocytes were conducted. Micafungin uptake occurred primarily (∼75%) by transporter-mediated mechanisms in rat and human. Micafungin uptake into hepatocytes was inhibited by taurocholate (K(i) = 61 µM), Na(+) depletion (45-55% reduced), and 10 µM rifampin (20-25% reduced); these observations support the involvement of Na(+)-taurocholate-cotransporting polypeptide (NTCP/Ntcp) and, to a lesser extent, organic anion-transporting polypeptides in the hepatic uptake of micafungin. The in vitro biliary clearance of micafungin, as measured by the B-CLEAR technique, amounted to 14 and 19 µl/(min · mg protein) in human and rat, respectively. In vitro biliary excretion of micafungin was reduced by 80 and 75% in the presence of the bile salt export pump (BSEP) inhibitors taurocholate (100 µM) and nefazodone (25 µM), respectively. Biliary excretion of micafungin also was reduced in the presence of breast cancer resistance protein inhibitors [N-(4-[2-(1,2,3,4-tetrahydro-6,7-dimethoxy-2-isoquinolinyl)ethyl]-phenyl)-9,10-dihydro-5-methoxy-9-oxo-4-acridine carboxamide (GF120918) (10 µM) and fumitremorgin C (10 µM)]. In vitro biliary excretion of micafungin was not significantly altered by coincubation with P-glycoprotein or multidrug resistance-associated protein 2 inhibitors. These results suggest that NTCP/Ntcp and BSEP/Bsep are primarily responsible for hepatobiliary disposition of micafungin in human and rat. Interference with hepatic bile acid disposition could be one mechanism underlying hepatotoxicity associated with micafungin in some patients.


Assuntos
Antifúngicos/farmacocinética , Sistema Biliar/metabolismo , Equinocandinas/farmacocinética , Lipopeptídeos/farmacocinética , Fígado/metabolismo , Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Antifúngicos/metabolismo , Canalículos Biliares/metabolismo , Técnicas de Cultura de Células , Células Cultivadas , Cromatografia Líquida de Alta Pressão , Relação Dose-Resposta a Droga , Equinocandinas/metabolismo , Hepatócitos/metabolismo , Humanos , Inativação Metabólica , Lipopeptídeos/metabolismo , Masculino , Micafungina , Transportadores de Ânions Orgânicos Dependentes de Sódio/metabolismo , Ratos , Ratos Wistar , Simportadores/metabolismo , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA