Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
1.
Acta Neuropathol ; 147(1): 69, 2024 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-38583129

RESUMO

Despite considerable research efforts, it is still not clear which mechanisms underlie neuronal cell death in neurodegenerative diseases. During the last 20 years, multiple pathways have been identified that can execute regulated cell death (RCD). Among these RCD pathways, apoptosis, necroptosis, pyroptosis, ferroptosis, autophagy-related cell death, and lysosome-dependent cell death have been intensively investigated. Although RCD consists of numerous individual pathways, multiple common proteins have been identified that allow shifting from one cell death pathway to another. Another layer of complexity is added by mechanisms such as the endosomal machinery, able to regulate the activation of some RCD pathways, preventing cell death. In addition, restricted axonal degeneration and synaptic pruning can occur as a result of RCD activation without loss of the cell body. RCD plays a complex role in neurodegenerative processes, varying across different disorders. It has been shown that RCD is differentially involved in Alzheimer's disease (AD) and amyotrophic lateral sclerosis (ALS), among the most common neurodegenerative diseases. In AD, neuronal loss is associated with the activation of not only necroptosis, but also pyroptosis. In ALS, on the other hand, motor neuron death is not linked to canonical necroptosis, whereas pyroptosis pathway activation is seen in white matter microglia. Despite these differences in the activation of RCD pathways in AD and ALS, the accumulation of protein aggregates immunoreactive for p62/SQSTM1 (sequestosome 1) is a common event in both diseases and many other neurodegenerative disorders. In this review, we describe the major RCD pathways with clear activation in AD and ALS, the main interactions between these pathways, as well as their differential and similar involvement in these disorders. Finally, we will discuss targeting RCD as an innovative therapeutic concept for neurodegenerative diseases, such as AD and ALS. Considering that the execution of RCD or "cellular suicide" represents the final stage in neurodegeneration, it seems crucial to prevent neuronal death in patients by targeting RCD. This would offer valuable time to address upstream events in the pathological cascade by keeping the neurons alive.


Assuntos
Doença de Alzheimer , Esclerose Lateral Amiotrófica , Morte Celular Regulada , Humanos , Morte Celular , Neurônios Motores
2.
Front Cell Neurosci ; 18: 1340240, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38463699

RESUMO

Disease-associated variants of TUBA4A (alpha-tubulin 4A) have recently been identified in familial ALS. Interestingly, a downregulation of TUBA4A protein expression was observed in familial as well as sporadic ALS brain tissue. To investigate whether a decreased TUBA4A expression could be a driving factor in ALS pathogenesis, we assessed whether TUBA4A knockdown in zebrafish could recapitulate an ALS-like phenotype. For this, we injected an antisense oligonucleotide morpholino in zebrafish embryos targeting the zebrafish TUBA4A orthologue. An antibody against synaptic vesicle 2 was used to visualize motor axons in the spinal cord, allowing the analysis of embryonic ventral root projections. Motor behavior was assessed using the touch-evoked escape response. In post-mortem ALS motor cortex, we observed reduced TUBA4A levels. The knockdown of the zebrafish TUBA4A orthologue induced a motor axonopathy and a significantly disturbed motor behavior. Both phenotypes were dose-dependent and could be rescued by the addition of human wild-type TUBA4A mRNA. Thus, TUBA4A downregulation as observed in ALS post-mortem motor cortex could be modeled in zebrafish and induced a motor axonopathy and motor behavior defects reflecting a motor neuron disease phenotype, as previously described in embryonic zebrafish models of ALS. The rescue with human wild-type TUBA4A mRNA suggests functional conservation and strengthens the causal relation between TUBA4A protein levels and phenotype severity. Furthermore, the loss of TUBA4A induces significant changes in post-translational modifications of tubulin, such as acetylation, detyrosination and polyglutamylation. Our data unveil an important role for TUBA4A in ALS pathogenesis, and extend the relevance of TUBA4A to the majority of ALS patients, in addition to cases bearing TUBA4A mutations.

3.
Nat Commun ; 15(1): 1028, 2024 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-38310108

RESUMO

Tauopathies encompass a group of neurodegenerative disorders characterised by diverse tau amyloid fibril structures. The persistence of polymorphism across tauopathies suggests that distinct pathological conditions dictate the adopted polymorph for each disease. However, the extent to which intrinsic structural tendencies of tau amyloid cores contribute to fibril polymorphism remains uncertain. Using a combination of experimental approaches, we here identify a new amyloidogenic motif, PAM4 (Polymorphic Amyloid Motif of Repeat 4), as a significant contributor to tau polymorphism. Calculation of per-residue contributions to the stability of the fibril cores of different pathologic tau structures suggests that PAM4 plays a central role in preserving structural integrity across amyloid polymorphs. Consistent with this, cryo-EM structural analysis of fibrils formed from a synthetic PAM4 peptide shows that the sequence adopts alternative structures that closely correspond to distinct disease-associated tau strains. Furthermore, in-cell experiments revealed that PAM4 deletion hampers the cellular seeding efficiency of tau aggregates extracted from Alzheimer's disease, corticobasal degeneration, and progressive supranuclear palsy patients, underscoring PAM4's pivotal role in these tauopathies. Together, our results highlight the importance of the intrinsic structural propensity of amyloid core segments to determine the structure of tau in cells, and in propagating amyloid structures in disease.


Assuntos
Doença de Alzheimer , Paralisia Supranuclear Progressiva , Tauopatias , Humanos , Doença de Alzheimer/genética , Amiloide/química , Proteínas Amiloidogênicas , Paralisia Supranuclear Progressiva/patologia , Proteínas tau/genética , Proteínas tau/química , Tauopatias/genética , Tauopatias/patologia
4.
Alzheimers Dement ; 20(1): 330-340, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37615275

RESUMO

BACKGROUND: Phosphorylated tau (p-tau) accumulation, a hallmark of Alzheimer's disease (AD), can also be found in the retina. However, it is uncertain whether it is linked to AD or another tauopathy. METHODS: Retinas from 164 individuals, with and without AD, were analyzed for p-tau accumulation and its relationship with age, dementia, and vision impairment. RESULTS: Retinal p-tau pathology showed a consistent pattern with four stages and a molecular composition distinct from that of cerebral tauopathies. The stage of retinal p-tau pathology correlated with age (r = 0.176, P = 0.024) and was associated with AD (odds ratio [OR] 3.193; P = 0.001), and inflammation (OR = 2.605; P = 0.001). Vision impairment was associated with underlying eye diseases (ß = 0.292; P = 0.001) and the stage of retinal p-tau pathology (ß = 0.192; P = 0.030) in a linear regression model. CONCLUSIONS: The results show the presence of a primary retinal tauopathy that is distinct from cerebral tauopathies.


Assuntos
Doença de Alzheimer , Tauopatias , Humanos , Tauopatias/patologia , Proteínas tau , Doença de Alzheimer/patologia , Retina
5.
Alzheimers Dement ; 20(1): 728-740, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37917365

RESUMO

There is emerging evidence that amyloid beta protein (Aß) and tau-related lesions in the retina are associated with Alzheimer's disease (AD). Aß and hyperphosphorylated (p)-tau deposits have been described in the retina and were associated with small amyloid spots visualized by in vivo imaging techniques as well as degeneration of the retina. These changes correlate with brain amyloid deposition as determined by histological quantification, positron emission tomography (PET) or clinical diagnosis of AD. However, the literature is not coherent on these histopathological and in vivo imaging findings. One important reason for this is the variability in the methods and the interpretation of findings across different studies. In this perspective, we indicate the critical methodological deviations among different groups and suggest a roadmap moving forward on how to harmonize (i) histopathologic examination of retinal tissue; (ii) in vivo imaging among different methods, devices, and interpretation algorithms; and (iii) inclusion/exclusion criteria for studies aiming at retinal biomarker validation.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Proteínas tau/metabolismo , Retina/diagnóstico por imagem , Biomarcadores/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Encéfalo/patologia
6.
Brain Pathol ; : e13213, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37793659

RESUMO

Alzheimer's disease (AD) is classically characterized by senile plaques and neurofibrillary tangles (NFTs). However, multiple copathologies can be observed in the AD brain and contribute to the development of cognitive decline. Limbic-predominant age-related TDP-43 encephalopathy neuropathological changes (LATE-NC) accumulates in the majority of AD cases and leads to more severe cognitive decline compared with AD pathology alone. In this review, we focus on the synergistic relationship between LATE-NC and tau in AD, highlighting the aggravating role of TDP-43 aggregates on tau pathogenesis and its impact on the clinical picture and therapeutic strategies. Additionally, we discuss to what extent the molecular patterns of LATE-NC in AD differ from frontotemporal lobar degeneration with TDP-43 pathology (FTLD-TDP) neuropathological changes. Thus, we highlight the importance of tau and TDP-43 synergies for subtyping AD patients, which may respond differently to therapeutic interventions depending on the presence of comorbid LATE-NC.

7.
Mol Neurodegener ; 18(1): 71, 2023 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-37777806

RESUMO

BACKGROUND: Most Alzheimer's Disease (AD) cases also exhibit limbic predominant age-related TDP-43 encephalopathy neuropathological changes (LATE-NC), besides amyloid-ß plaques and neurofibrillary tangles (NFTs) containing hyperphosphorylated tau (p-tau). LATE-NC is characterized by cytoplasmic aggregates positive for pathological TDP-43 and is associated with more severe clinical outcomes in AD, compared to AD cases lacking TDP-43 pathology TDP-43: AD(LATE-NC-). Accumulating evidence suggests that TDP-43 and p-tau interact and exhibit pathological synergy during AD pathogenesis. However, it is not yet fully understood how the presence of TDP-43 affects p-tau aggregation in symptomatic AD. METHODS: In this study, we investigated the impact of TDP-43 proteinopathy on p-tau pathology with different approaches: histologically, in a human post-mortem cohort (n = 98), as well as functionally using a tau biosensor cell line and TDP-43A315T transgenic mice. RESULTS: We found that AD cases with comorbid LATE-NC, AD(LATE-NC+), have increased burdens of pretangles and/or NFTs as well as increased brain levels of p-tau199, compared to AD(LATE-NC-) cases and controls. The burden of TDP-43 pathology was also correlated with the Braak NFT stages. A tau biosensor cell line treated with sarkosyl-insoluble, brain-derived homogenates from AD(LATE-NC+) cases displayed exacerbated p-tau seeding, compared to control and AD(LATE-NC-)-treated cells. Consistently, TDP-43A315T mice injected with AD(LATE-NC+)-derived extracts also exhibited a more severe hippocampal seeding, compared to the remaining experimental groups, albeit no TDP-43 aggregation was observed. CONCLUSIONS: Our findings extend the current knowledge by supporting a functional synergy between TDP-43 and p-tau. We further demonstrate that TDP-43 pathology worsens p-tau aggregation in an indirect manner and increases its seeding potential, probably by increasing p-tau levels. This may ultimately contribute to tau-driven neurotoxicity and cell death. Because most AD cases present with comorbid LATE-NC, this study has an impact on the understanding of TDP-43 and tau pathogenesis in AD and LATE, which account for the majority of dementia cases worldwide. Moreover, it highlights the need for the development of a biomarker that detects TDP-43 during life, in order to properly stratify AD and LATE patients.


Assuntos
Doença de Alzheimer , Proteinopatias TDP-43 , Humanos , Animais , Camundongos , Proteínas tau/metabolismo , Doença de Alzheimer/metabolismo , Emaranhados Neurofibrilares/metabolismo , Proteinopatias TDP-43/metabolismo , Proteínas de Ligação a DNA/metabolismo
8.
Acta Neuropathol Commun ; 11(1): 151, 2023 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-37723585

RESUMO

BACKGROUND: Motor neurons (MNs), which are primarily affected in amyotrophic lateral sclerosis (ALS), are a specialized type of neurons that are long and non-dividing. Given their unique structure, these cells heavily rely on transport of organelles along their axons and the process of autophagy to maintain their cellular homeostasis. It has been shown that disruption of the autophagy pathway is sufficient to cause progressive neurodegeneration and defects in autophagy have been associated with various subtypes of ALS, including those caused by hexanucleotide repeat expansions in the C9orf72 gene. A more comprehensive understanding of the dysfunctional cellular mechanisms will help rationalize the design of potent and selective therapies for C9orf72-ALS. METHODS: In this study, we used induced pluripotent stem cell (iPSC)-derived MNs from C9orf72-ALS patients and isogenic control lines to identify the underlying mechanisms causing dysregulations of the autophagy-lysosome pathway. Additionally, to ascertain the potential impact of C9orf72 loss-of-function on autophagic defects, we characterized the observed phenotypes in a C9orf72 knockout iPSC line (C9-KO). RESULTS: Despite the evident presence of dysfunctions in several aspects of the autophagy-lysosome pathway, such as disrupted lysosomal homeostasis, abnormal lysosome morphology, inhibition of autophagic flux, and accumulation of p62 in C9orf72-ALS MNs, we were surprised to find that C9orf72 loss-of-function had minimal influence on these phenotypes. Instead, we primarily observed impairment in endosome maturation as a result of C9orf72 loss-of-function. Additionally, our study shed light on the pathological mechanisms underlying C9orf72-ALS, as we detected an increased TBK1 phosphorylation at S172 in MNs derived from C9orf72 ALS patients. CONCLUSIONS: Our data provides further insight into the involvement of defects in the autophagy-lysosome pathway in C9orf72-ALS and strongly indicate that those defects are mainly due to the toxic gain-of-function mechanisms underlying C9orf72-ALS.


Assuntos
Esclerose Lateral Amiotrófica , Humanos , Esclerose Lateral Amiotrófica/genética , Proteína C9orf72/genética , Mutação com Ganho de Função , Lisossomos , Neurônios Motores , Autofagia
9.
Science ; 381(6663): 1176-1182, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37708272

RESUMO

Neuronal cell loss is a defining feature of Alzheimer's disease (AD), but the underlying mechanisms remain unclear. We xenografted human or mouse neurons into the brain of a mouse model of AD. Only human neurons displayed tangles, Gallyas silver staining, granulovacuolar neurodegeneration (GVD), phosphorylated tau blood biomarkers, and considerable neuronal cell loss. The long noncoding RNA MEG3 was strongly up-regulated in human neurons. This neuron-specific long noncoding RNA is also up-regulated in AD patients. MEG3 expression alone was sufficient to induce necroptosis in human neurons in vitro. Down-regulation of MEG3 and inhibition of necroptosis using pharmacological or genetic manipulation of receptor-interacting protein kinase 1 (RIPK1), RIPK3, or mixed lineage kinase domain-like protein (MLKL) rescued neuronal cell loss in xenografted human neurons. This model suggests potential therapeutic approaches for AD and reveals a human-specific vulnerability to AD.


Assuntos
Doença de Alzheimer , Necroptose , Neurônios , RNA Longo não Codificante , Animais , Humanos , Camundongos , Doença de Alzheimer/patologia , Xenoenxertos , Necroptose/genética , Neurônios/patologia , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Proteínas Quinases/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/genética
10.
Clin Neuropathol ; 42(5): 176-189, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37489069

RESUMO

Cerebral amyloid angiopathy (CAA) is the most frequent cause of lobar hemorrhages in the brains of elderly individuals. It is characterized by the deposition of amyloidogenic proteins in the vessel wall of leptomeningeal and/or intracerebral blood vessels. Different proteins can cause CAA. Most frequently, the amyloid ß protein (Aß) is found to be deposited in CAA and indicates a link to Alzheimer's disease, because Aß is known to be deposited in amyloid plaques characteristic of Alzheimer's disease. Among other proteins that can also cause CAA, transthyretin (TTR) is the most important one because TTR amyloidosis can be successfully treated. Therefore, it is essential to diagnose TTR-related CAA even in biopsies taken in the context of cerebral hematoma evacuations if possible. The current "Boston criteria version 2.0" for the diagnosis of CAA highlight the importance of autopsy for the definite diagnosis of CAA and biopsies for the diagnosis of probable CAA. Here, we discuss the implications of Aß-related and non-Aß-related forms of CAA for their current diagnostic relevance also in the context of neurodegenerative diseases as well as the implications of the Boston criteria version 2.0 for neuropathological diagnosis.


Assuntos
Doença de Alzheimer , Amiloidose , Angiopatia Amiloide Cerebral , Humanos , Idoso , Doença de Alzheimer/diagnóstico , Peptídeos beta-Amiloides/metabolismo , Angiopatia Amiloide Cerebral/diagnóstico , Angiopatia Amiloide Cerebral/etiologia , Encéfalo/patologia , Amiloidose/patologia , Hemorragia Cerebral/etiologia
11.
Nat Neurosci ; 26(6): 1021-1031, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37188873

RESUMO

Early Alzheimer's disease (AD) is associated with hippocampal hyperactivity and decreased sleep quality. Here we show that homeostatic mechanisms transiently counteract the increased excitatory drive to CA1 neurons in AppNL-G-F mice, but that this mechanism fails in older mice. Spatial transcriptomics analysis identifies Pmch as part of the adaptive response in AppNL-G-F mice. Pmch encodes melanin-concentrating hormone (MCH), which is produced in sleep-active lateral hypothalamic neurons that project to CA1 and modulate memory. We show that MCH downregulates synaptic transmission, modulates firing rate homeostasis in hippocampal neurons and reverses the increased excitatory drive to CA1 neurons in AppNL-G-F mice. AppNL-G-F mice spend less time in rapid eye movement (REM) sleep. AppNL-G-F mice and individuals with AD show progressive changes in morphology of CA1-projecting MCH axons. Our findings identify the MCH system as vulnerable in early AD and suggest that impaired MCH-system function contributes to aberrant excitatory drive and sleep defects, which can compromise hippocampus-dependent functions.


Assuntos
Doença de Alzheimer , Hormônios Hipotalâmicos , Camundongos , Animais , Doença de Alzheimer/genética , Neurônios/fisiologia , Hormônios Hipofisários , Sono , Camundongos Transgênicos
12.
Acta Neuropathol Commun ; 11(1): 82, 2023 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-37198698

RESUMO

Aging is the main risk factor for Alzheimer's disease (AD) and other neurodegenerative pathologies, but the molecular and cellular changes underlying pathological aging of the nervous system are poorly understood. AD pathology seems to correlate with the appearance of cells that become senescent due to the progressive accumulation of cellular insults causing DNA damage. Senescence has also been shown to reduce the autophagic flux, a mechanism involved in clearing damaged proteins from the cell, and such impairment has been linked to AD pathogenesis. In this study, we investigated the role of cellular senescence on AD pathology by crossing a mouse model of AD-like amyloid-ß (Aß) pathology (5xFAD) with a mouse model of senescence that is genetically deficient for the RNA component of the telomerase (Terc-/-). We studied changes in amyloid pathology, neurodegeneration, and the autophagy process in brain tissue samples and primary cultures derived from these mice by complementary biochemical and immunostaining approaches. Postmortem human brain samples were also processed to evaluate autophagy defects in AD patients. Our results show that accelerated senescence produces an early accumulation of intraneuronal Aß in the subiculum and cortical layer V of 5xFAD mice. This correlates with a reduction in amyloid plaques and Aß levels in connecting brain regions at a later disease stage. Neuronal loss was specifically observed in brain regions presenting intraneuronal Aß and was linked to telomere attrition. Our results indicate that senescence affects intraneuronal Aß accumulation by impairing autophagy function and that early autophagy defects can be found in the brains of AD patients. Together, these findings demonstrate the instrumental role of senescence in intraneuronal Aß accumulation, which represents a key event in AD pathophysiology, and emphasize the correlation between the initial stages of amyloid pathology and defects in the autophagy flux.


Assuntos
Doença de Alzheimer , Neurônios , Humanos , Camundongos , Animais , Neurônios/metabolismo , Peptídeos beta-Amiloides/metabolismo , Doença de Alzheimer/patologia , Encéfalo/patologia , Autofagia , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Camundongos Transgênicos , Modelos Animais de Doenças
13.
Pediatr Radiol ; 53(5): 929-941, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36580101

RESUMO

BACKGROUND: Postmortem fetal magnetic resonance imaging (MRI) has been on the rise since it was proven to be a good alternative to conventional autopsy. Since the fetal brain is sensitive to postmortem changes, extensive tissue fixation is required for macroscopic and microscopic assessment. Estimation of brain maceration on MRI, before autopsy, may optimize histopathological resources. OBJECTIVE: The aim of the study is to develop an MRI-based postmortem fetal brain maceration score and to correlate it with brain maceration as assessed by autopsy. MATERIALS AND METHODS: This retrospective single-center study includes 79 fetuses who had postmortem MRI followed by autopsy. Maceration was scored on MRI on a numerical severity scale, based on our brain-specific maceration score and the whole-body score of Montaldo. Additionally, maceration was scored on histopathology with a semiquantitative severity scale. Both the brain-specific and the whole-body maceration imaging scores were correlated with the histopathological maceration score. Intra- and interobserver agreements were tested for the brain-specific maceration score. RESULTS: The proposed brain-specific maceration score correlates well with fetal brain maceration assessed by autopsy (τ = 0.690), compared to a poorer correlation of the whole-body method (τ = 0.452). The intra- and interobserver agreement was excellent (correlation coefficients of 0.943 and 0.864, respectively). CONCLUSION: We present a brain-specific postmortem MRI maceration score that correlates well with the degree of fetal brain maceration seen at histopathological exam. The score is reliably reproduced by different observers with different experience.


Assuntos
Morte Fetal , Mudanças Depois da Morte , Feminino , Humanos , Autopsia/métodos , Estudos Retrospectivos , Feto/diagnóstico por imagem , Feto/patologia , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem
14.
Acta Neuropathol ; 145(2): 175-195, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36481964

RESUMO

The major neuropathological hallmarks of Alzheimer's disease (AD) are amyloid ß (Aß) plaques and neurofibrillary tangles (NFT), accompanied by neuroinflammation and neuronal loss. Increasing evidence is emerging for the activation of the canonical NOD-, LRR- and pyrin domain-containing 3 (NLRP3) inflammasome in AD. However, the mechanisms leading to neuronal loss in AD and the involvement of glial cells in these processes are still not clear. The aim of this study was to investigate the contribution of pyroptosis, a pro-inflammatory mechanism of cell death downstream of the inflammasome, to neurodegeneration in AD. Immunohistochemistry and biochemical analysis of protein levels were performed on human post-mortem brain tissue. We investigated the presence of cleaved gasdermin D (GSDMD), the pyroptosis effector protein, as well as the NLRP3 inflammasome-forming proteins, in the medial temporal lobe of 23 symptomatic AD, 25 pathologically defined preclinical AD (p-preAD) and 21 non-demented control cases. Cleaved GSDMD was detected in microglia, but also in astrocytes and in few pyramidal neurons in the first sector of the cornu ammonis (CA1) of the hippocampus and the temporal cortex of Brodmann area 36. Only microglia expressed all NLRP3 inflammasome-forming proteins (i.e., ASC, NLRP3, caspase-1). Cleaved GSDMD-positive astrocytes and neurons exhibited caspase-8 and non-canonical inflammasome protein caspase-4, respectively, potentially indicating alternative pathways for GSDMD cleavage. Brains of AD patients exhibited increased numbers of cleaved GSDMD-positive cells. Cleaved GSDMD-positive microglia and astrocytes were found in close proximity to Aß plaques, while cleaved GSDMD-positive neurons were devoid of NFTs. In CA1, NLRP3-positive microglia and cleaved GSDMD-positive neurons were associated with local neuronal loss, indicating a possible contribution of NLRP3 inflammasome and pyroptosis activation to AD-related neurodegeneration. Taken together, our results suggest cell type-specific activation of pyroptosis in AD and extend the current knowledge about the contribution of neuroinflammation to the neurodegenerative process in AD via a direct link to neuron death by pyroptosis.


Assuntos
Doença de Alzheimer , Inflamassomos , Humanos , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Doença de Alzheimer/patologia , Piroptose , Microglia/patologia , Peptídeos beta-Amiloides , Astrócitos/patologia , Doenças Neuroinflamatórias , Neurônios/patologia
15.
Alzheimers Dement ; 19(4): 1245-1259, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-35993441

RESUMO

INTRODUCTION: The most common genetic cause of frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) are hexanucleotide repeats in chromosome 9 open reading frame 72 (C9orf72). These repeats produce dipeptide repeat proteins with poly(PR) being the most toxic one. METHODS: We performed a kinome-wide CRISPR/Cas9 knock-out screen in human induced pluripotent stem cell (iPSC) -derived cortical neurons to identify modifiers of poly(PR) toxicity, and validated the role of candidate modifiers using in vitro, in vivo, and ex-vivo studies. RESULTS: Knock-down of NIMA-related kinase 6 (NEK6) prevented neuronal toxicity caused by poly(PR). Knock-down of nek6 also ameliorated the poly(PR)-induced axonopathy in zebrafish and NEK6 was aberrantly expressed in C9orf72 patients. Suppression of NEK6 expression and NEK6 activity inhibition rescued axonal transport defects in cortical neurons from C9orf72 patient iPSCs, at least partially by reversing p53-related DNA damage. DISCUSSION: We identified NEK6, which regulates poly(PR)-mediated p53-related DNA damage, as a novel therapeutic target for C9orf72 FTD/ALS.


Assuntos
Esclerose Lateral Amiotrófica , Demência Frontotemporal , Células-Tronco Pluripotentes Induzidas , Animais , Humanos , Esclerose Lateral Amiotrófica/genética , Demência Frontotemporal/genética , Células-Tronco Pluripotentes Induzidas/metabolismo , Proteína C9orf72/genética , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Sistemas CRISPR-Cas , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Neurônios/metabolismo , Expansão das Repetições de DNA/genética , Quinases Relacionadas a NIMA/genética , Quinases Relacionadas a NIMA/metabolismo
16.
Alzheimers Dement ; 19(4): 1440-1451, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36170544

RESUMO

INTRODUCTION: Imaging studies indicated basal forebrain reduction in primary progressive aphasia (PPA), which might be a candidate marker for cholinergic treatment. Nucleus basalis of Meynert (nbM) neuronal loss has been reported, but a systematic quantitative neuropathological assessment including the three clinical PPA variants is lacking. METHODS: Quantitative assessment of neuronal density and pathology was performed on nbM tissue of 47 cases: 15 PPA, constituting the different clinicopathological phenotypes, 14 Alzheimer's disease (AD), and 18 cognitively normals. RESULTS: Group-wise, reduced nbM neuronal density was restricted to AD. At the individual level, semantic variant PPA with underlying AD neuropathological change (ADNC) had lower neuronal densities, while those with frontotemporal lobar degeneration (FTLD) transactive response DNA binding protein 43 kDa (TDP-43) type C pathology were unaffected. Higher Braak stages and increased numbers of nbM-related pretangles were associated with nbM neuronal loss. DISCUSSION: nbM neuronal loss in PPA is related to ADNC. This study cautions against overinterpreting MRI-based basal forebrain volumes in non-AD PPA as neuronal loss.


Assuntos
Doença de Alzheimer , Afasia Primária Progressiva , Degeneração Lobar Frontotemporal , Humanos , Doença de Alzheimer/patologia , Núcleo Basal de Meynert/metabolismo , Núcleo Basal de Meynert/patologia , Degeneração Lobar Frontotemporal/patologia , Neurônios/metabolismo , Afasia Primária Progressiva/diagnóstico por imagem , Afasia Primária Progressiva/patologia
17.
Neuron ; 110(23): 3919-3935.e6, 2022 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-36446381

RESUMO

Can SARS-CoV-2 hitchhike on the olfactory projection and take a direct and short route from the nose into the brain? We reasoned that the neurotropic or neuroinvasive capacity of the virus, if it exists, should be most easily detectable in individuals who died in an acute phase of the infection. Here, we applied a postmortem bedside surgical procedure for the rapid procurement of tissue, blood, and cerebrospinal fluid samples from deceased COVID-19 patients infected with the Delta, Omicron BA.1, or Omicron BA.2 variants. Confocal imaging of sections stained with fluorescence RNAscope and immunohistochemistry afforded the light-microscopic visualization of extracellular SARS-CoV-2 virions in tissues. We failed to find evidence for viral invasion of the parenchyma of the olfactory bulb and the frontal lobe of the brain. Instead, we identified anatomical barriers at vulnerable interfaces, exemplified by perineurial olfactory nerve fibroblasts enwrapping olfactory axon fascicles in the lamina propria of the olfactory mucosa.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Bulbo Olfatório , Olfato , Encéfalo
18.
Brain Res Bull ; 190: 204-217, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36244581

RESUMO

The tau protein (τ) is one of the two hallmark proteins of Alzheimer's disease (AD) together with the amyloid ß protein (Aß). In contrast to Aß, abnormally phosphorylated τ (p-τ) can also be found in non-AD tauopathies. In AD, p-τ is the main component of intraneuronal neurofibrillary tangles, which result from aggregation of abnormally phosphorylated and folded τ. In this review, we discuss the role of p-τ pathology in Alzheimer's disease considering neuropathological, biochemical, cellular, animal model, and clinical findings. We discuss the relationship between p-τ and other AD-related proteins such as Aß and transactive response DNA-binding protein 43 (TDP-43). In light of the current state of knowledge, we conclude that p-τ aggregation known as primary age-related tauopathy (PART) may represent a prerequisite for the development of AD rather that a downstream effect of Aß toxicity. However, Aß as well as TDP-43 pathology appear to accelerate accumulation and propagation of p-τ pathology once initiated, ultimately leading to the full-blown picture of AD. In this context, τ seeds can induce granulovacuolar degeneration (GVD), AD-typical lesions in which the activated necrosome - required for the execution of necroptosis, a programmed form of cell death - can be found. Moreover, necrosome-exhibiting GVD is associated with a decreased neuronal density. Thus, we speculate that p-τ pathology is a major driver for neuron loss in AD via GVD-mediated necroptosis. Overall, p-τ seems to play a central role in AD as it appears to constitute a prerequisite for AD development which can then be accelerated by co-factors. This would fit in a probabilistic model of AD, in which the presence and severity of the respective co-factors such as Aß, TDP-43, and others contribute separately to AD pathogenesis as probabilistic factors with a certain weight.


Assuntos
Doença de Alzheimer , Tauopatias , Animais , Emaranhados Neurofibrilares/patologia , Proteínas tau/metabolismo , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Tauopatias/metabolismo , Degeneração Neural/metabolismo , Proteínas de Ligação a DNA/metabolismo , Morte Celular
19.
Brain ; 145(10): 3558-3570, 2022 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-36270003

RESUMO

Alzheimer's disease is neuropathologically characterized by the deposition of the amyloid ß-peptide (Aß) as amyloid plaques. Aß plaque pathology starts in the neocortex before it propagates into further brain regions. Moreover, Aß aggregates undergo maturation indicated by the occurrence of post-translational modifications. Here, we show that propagation of Aß plaques is led by presumably non-modified Aß followed by Aß aggregate maturation. This sequence was seen neuropathologically in human brains and in amyloid precursor protein transgenic mice receiving intracerebral injections of human brain homogenates from cases varying in Aß phase, Aß load and Aß maturation stage. The speed of propagation after seeding in mice was best related to the Aß phase of the donor, the progression speed of maturation to the stage of Aß aggregate maturation. Thus, different forms of Aß can trigger propagation/maturation of Aß aggregates, which may explain the lack of success when therapeutically targeting only specific forms of Aß.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Animais , Humanos , Camundongos , Peptídeos beta-Amiloides/metabolismo , Doença de Alzheimer/patologia , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Placa Amiloide/metabolismo , Camundongos Transgênicos , Encéfalo/patologia , Modelos Animais de Doenças
20.
Acta Neuropathol Commun ; 10(1): 128, 2022 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-36057624

RESUMO

It has become evident that Alzheimer's Disease (AD) is not only linked to its hallmark lesions-amyloid plaques and neurofibrillary tangles (NFTs)-but also to other co-occurring pathologies. This may lead to synergistic effects of the respective cellular and molecular players, resulting in neuronal death. One of these co-pathologies is the accumulation of phosphorylated transactive-response DNA binding protein 43 (pTDP-43) as neuronal cytoplasmic inclusions, currently considered to represent limbic-predominant age-related TDP-43 encephalopathy neuropathological changes (LATE-NC), in up to 70% of symptomatic AD cases. Granulovacuolar degeneration (GVD) is another AD co-pathology, which also contains TDP-43 and other AD-related proteins. Recently, we found that all proteins required for necroptosis execution, a previously defined programmed form of neuronal cell death, are present in GVD, such as the phosphorylated necroptosis executioner mixed-lineage kinase domain-like protein (pMLKL). Accordingly, this protein is a reliable marker for GVD lesions, similar to other known GVD proteins. Importantly, it is not yet known whether the presence of LATE-NC in symptomatic AD cases is associated with necroptosis pathway activation, presumably contributing to neuron loss by cell death execution. In this study, we investigated the impact of LATE-NC on the severity of necroptosis-associated GVD lesions, phosphorylated tau (pTau) pathology and neuronal density. First, we used 230 human post-mortem cases, including 82 controls without AD neuropathological changes (non-ADNC), 81 non-demented cases with ADNC, i.e.: pathologically-defined preclinical AD (p-preAD) and 67 demented cases with ADNC. We found that Braak NFT stage and LATE-NC stage were good predictors for GVD expansion and neuronal loss in the hippocampal CA1 region. Further, we compared the impact of TDP-43 accumulation on hippocampal expression of pMLKL-positive GVD, pTau as well as on neuronal density in a subset of nine non-ADNC controls, ten symptomatic AD cases with (ADTDP+) and eight without LATE-NC (ADTDP-). Here, we observed increased levels of pMLKL-positive, GVD-exhibiting neurons in ADTDP+ cases, compared to ADTDP- and controls, which was accompanied by augmented pTau pathology. Neuronal loss in the CA1 region was increased in ADTDP+ compared to ADTDP- cases. These data suggest that co-morbid LATE-NC in AD impacts not only pTau pathology but also GVD-mediated necroptosis pathway activation, which results in an accelerated neuronal demise. This further highlights the cumulative and synergistic effects of comorbid pathologies leading to neuronal loss in AD. Accordingly, protection against necroptotic neuronal death appears to be a promising therapeutic option for AD and LATE.


Assuntos
Doença de Alzheimer , Doença de Alzheimer/patologia , Proteínas de Ligação a DNA/metabolismo , Humanos , Necroptose , Degeneração Neural/patologia , Emaranhados Neurofibrilares/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA