Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Domest Anim Endocrinol ; 59: 30-36, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27888738

RESUMO

The present study was undertaken with the aim of examining whether and how exendin-4 (1-3) fragment, ie, Ex-4 (1-3) fragment, contributes to the regulation of glucose. An analog of oxyntomodulin (OXM) ([Gly2, Glu3]-OXM), a glucagon analog ([Gly2, Glu3]-glucagon), and two derivatives of Ex-4 (glucandin and [Gly2, Glu3]-glucandin) were synthesized by substituting with Gly2, Glu3 at the N-terminuses of OXM and glucagon and/or by attaching Ex-4 (30-39) amide at the C-terminus of glucagon. Effects of these peptides on plasma insulin and glucose concentrations were investigated in cattle by conducting 3 in vivo experiments. In all 3 experiments, 0.1% BSA saline was injected as a control. In experiment 1, glucandin (amino acid sequence was glucagon [1-29]-Ex-4 [30-39] amide) and [Gly2, Glu3]-glucandin were injected at the dose rates of 5 µg/kg BW in 4-mo-old Holstein steers. Results showed that glucoregulatory effects of glucandin were similar to those of glucagon. [Gly2, Glu3]-glucandin stimulated insulin secretion at 2 to 10 min and lowered glucose concentrations at 15 to 75 min. Experiment 2 was carried out to better understand the glucose-lowering potency of [Gly2, Glu3]-glucandin, in comparison with Ex-4 and glucagon-like peptide-1 (GLP-1), using 4.5-mo-old Holstein steers. [Gly2, Glu3]-glucandin was injected at dose rates of 0.3 µg/kg BW, 1.0 µg/kg BW, 3.2 µg/kg BW, and 6.4 µg/kg BW. Ex-4 and GLP-1 were injected at dose rates of 0.3 µg/kg BW. Results showed that the insulinotropic and glucose-lowering effects of [Gly2, Glu3]-glucandin were not as potent as for Ex-4 and GLP-1, and the minimum effective dose of [Gly2, Glu3]-glucandin to regulate plasma glucose concentrations was 3.2 µg/kg BW. In experiment 3, [Gly2, Glu3]-OXM and [Gly2, Glu3]-glucagon were injected at dose rates of 5 µg/kg BW in 5-mo-old Holstein steers. Both [Gly2, Glu3]-OXM and [Gly2, Glu3]-glucagon increased insulin concentration. [Gly2, Glu3]-OXM potently lowered plasma glucose, but [Gly2, Glu3]-glucagon did not change it. In summary, our findings clearly demonstrate that Ex-4 (1-3) fragment contributes to the regulation of glucose. [Gly2, Glu3]-OXM and [Gly2, Glu3]-glucandin are insulinotropic and glucose-lowering peptides. It was of interest that the substitution of the first 3 amino acids of OXM with Ex-4 (1-3) could reverse the upregulation of glucose by OXM into downregulation of glucose. In lowering glycemia, [Gly2, Glu3]-OXM seemed almost as effective as Ex-4, and [Gly2, Glu3]-glucandin was less profound than Ex-4. These findings contributed new insights into the hormonal regulation of glucose in ruminants. The action of [Gly2, Glu3]-OXM and [Gly2, Glu3]-glucandin might provide an advantage in glycemic control of insulin resistance in cattle and humans.


Assuntos
Glicemia/efeitos dos fármacos , Bovinos/sangue , Oligopeptídeos/farmacologia , Oxintomodulina/farmacologia , Peptídeos/farmacologia , Peçonhas/farmacologia , Sequência de Aminoácidos , Animais , Exenatida , Peptídeo 1 Semelhante ao Glucagon , Insulina/sangue , Masculino , Oligopeptídeos/química , Oxintomodulina/química , Peptídeos/química , Peçonhas/química
2.
J Anim Sci ; 94(1): 58-64, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26812312

RESUMO

The present study characterizes the receptor that mediates the insulinotropic action of bombesin-like peptides (BLP) in ruminants. Eight Holstein steers were randomly and intravenously injected with synthetic bovine gastrin-releasing peptide (GRP; 0.9 nmol/kg BW), neuromedin B (NMB; 0.9 nmol/kg BW), or neuromedin C (NMC; 0.9 nmol/kg BW), each alone or combined with the antagonist of GRP receptors N-acetyl-GRP-OCHCH (N-GRP-EE; 22.5 nmol/kg BW) or the antagonist of GH secretagogue receptor type 1a (GHS-R1a) [D-Lys]-GHRP-6 (21.5 nmol/kg BW). Blood samples were collected at -10, 0 (just before injection), 5, 10, 15, 20, 30, 45, 60, 75, and 90 min relative to injection time. Levels of injected peptides, insulin, and glucose in plasma were analyzed. Results showed that the peak of insulin levels was seen at 5 min after injection of NMC or GRP. Plasma glucose was observed in 2 phases; a significant rise followed a remarkable fall after NMC or GRP administration compared with injection of the vehicle ( < 0.05). On a same molar basis, effects of GRP on insulin and glucose were more potent than those of NMC ( < 0.05). The NMC-induced changes of insulin and glucose were completely blocked by N-GRP-EE, but [D-Lys]-GHRP-6 did not block any of these changes. Administration of NMB or N-GRP-EE alone did not change the circulating levels of insulin or glucose during any of the sampling time points ( > 0.05). These results indicated that the insulinotropic action of BLP is mediated by GRP receptors but not through a ghrelin/GHS-R1a pathway and that BLP may be involved in the regulation of glucose homeostasis in ruminants.


Assuntos
Bombesina/farmacologia , Peptídeo Liberador de Gastrina/farmacologia , Insulina/metabolismo , Neurotransmissores/farmacologia , Receptores da Bombesina/antagonistas & inibidores , Animais , Glicemia , Bovinos , Glucose/metabolismo , Masculino , Neurocinina B/análogos & derivados , Neurocinina B/farmacologia , Fragmentos de Peptídeos/farmacologia , Receptores de Grelina/antagonistas & inibidores
3.
Domest Anim Endocrinol ; 44(2): 70-80, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23122871

RESUMO

Oxyntomodulin (OXM), glucagon, glucagon-like peptide-1 (GLP-1), and exendin-4 (Ex-4) are peptide hormones that regulate glucose homeostasis in monogastric and ruminant animals. Recently, we reported that the insulin-releasing effects of OXM and glucagon in cattle are mediated through both GLP-1 and glucagon receptors. The purpose of this study was to examine the mechanisms of the glucoregulatory actions induced by Ex-4, GLP-1, OXM, and glucagon and the interrelationships among these hormones in cattle. Two experiments were performed in Holstein cattle. In Experiment 1, we initially assessed the effects of intravenous (iv) bolus injection of 0, 0.25, 1, and 2 µg/kg body weight (BW) of Ex-4, GLP-1, and OXM on insulin and glucose concentrations in 3-mo-old intact male Holstein calves. In Experiment 2, we studied insulin and glucose responses to iv coinjection of 0.25 µg of Ex-4 or GLP-1/kg BW with 2 µg of OXM or glucagon/kg BW in 4-mo-old Holstein steers. Administration of peptides and blood sampling were done via a jugular catheter. Plasma was separated and the concentrations of peptides and glucose in plasma were analyzed using radioimmunoassay and enzymatic methods, respectively. Results showed that the potent glucoregulatory action of Ex-4 in 4-mo-old steers was delayed and attenuated when Ex-4 was coinjected with OXM. The decline in plasma glucose concentrations began at 5 min in the Ex-4-injected group (P < 0.05) vs 15 min in the Ex-4 + OXM-injected group (P < 0.05). Plasma concentrations of glucose at 30 min were reduced 26% from basal concentrations in the Ex-4-injected group and 13% in the Ex-4 + OXM-injected group (P < 0.001). Results also showed that the glucose concentrations initially increased in the Ex-4 + glucagon-treated group, but declined to a relatively hypoglycemic condition by 90 to 120 min. In contrast, the glucose concentrations at specific time points between the GLP-1 + OXM-injected group and the OXM-injected group did not differ. Similarly, the glucose concentrations in the GLP-1 + glucagon-injected group did not differ from those in the glucagon-injected group. Because OXM and glucagon mediate glucose concentrations via the glucagon receptor, it is suggested that the potent glucose-lowering action of Ex-4 might include the glucagon receptor antagonistic action of Ex-4.


Assuntos
Doenças dos Bovinos/induzido quimicamente , Hipoglicemia/veterinária , Oxintomodulina/uso terapêutico , Peptídeos/toxicidade , Peçonhas/toxicidade , Animais , Glicemia/efeitos dos fármacos , Bovinos , Doenças dos Bovinos/tratamento farmacológico , Relação Dose-Resposta a Droga , Exenatida , Glucagon/sangue , Peptídeo 1 Semelhante ao Glucagon/administração & dosagem , Peptídeo 1 Semelhante ao Glucagon/farmacologia , Hipoglicemia/tratamento farmacológico , Insulina/sangue , Masculino , Oxintomodulina/administração & dosagem , Oxintomodulina/sangue , Peptídeos/administração & dosagem , Peptídeos/sangue , Radioimunoensaio , Peçonhas/administração & dosagem , Peçonhas/sangue
4.
Domest Anim Endocrinol ; 42(3): 155-64, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22154917

RESUMO

Oxyntomodulin (OXM), glucagon, and glucagon-like peptide-1 (GLP-1), peptide hormones derived from the glucagon gene, play an important role in glucose homeostasis. The insulinotropic action of these three homologous peptides has been well documented in monogastric animals. However, information on the relationships among these peptides in insulin-releasing action, specifically in ruminants, is still insufficient. In this regard, we carried out two experiments in cattle. In experiment 1, effects of glucagon and GLP-1 on plasma insulin and glucose were investigated in 10-mo-old Holstein steers (347 ± 8 kg, n = 8) under normoglycemic conditions. Peptides were administered intravenously at dose rates of 0.12, 0.25, 0.50, and 1.25 nmol/kg body weight (BW). In experiment 2, the relationships among OXM, glucagon, and GLP-1 in the insulinotropic and glucoregulatory actions were elucidated in 3-mo-old Holstein steers (94 ± 2 kg, n = 8) using agonist-antagonist strategy. In agonist strategy, these three peptides were administered alone or coadministered at dose rates of 10 µg of OXM/kg BW, 4 µg of glucagon/kg BW, and 2 µg of GLP-1/kg BW. In antagonist strategy, 2 µg of each peptide was administered alone or in combination with 10 µg of [des His1, des Phe6, Glu9] glucagon amide (a glucagon receptor antagonist) or exendin-4 (5-39) amide (a GLP-1 receptor antagonist). Our results showed that OXM, glucagon, and GLP-1 had insulinotropic actions in ruminants under normoglycemic conditions. Our results also showed that the insulin-releasing effects of OXM and glucagon were mediated through both GLP-1 receptors (GLP-1R) and glucagon receptors. These insulinotropic effects of OXM and glucagon through GLP-1R were inhibited by GLP-1. Our findings expand the relationships among OXM, glucagon, and GLP-1 in the insulinotropic and glucoregulatory actions.


Assuntos
Peptídeo 1 Semelhante ao Glucagon/farmacologia , Glucagon/farmacologia , Oxintomodulina/farmacologia , Animais , Glicemia/metabolismo , Bovinos , Glucagon/análogos & derivados , Glucagon/antagonistas & inibidores , Peptídeo 1 Semelhante ao Glucagon/antagonistas & inibidores , Peptídeo 1 Semelhante ao Glucagon/sangue , Insulina/sangue , Peptídeos e Proteínas de Sinalização Intercelular , Masculino , Peptídeos/farmacologia
5.
Domest Anim Endocrinol ; 39(3): 163-70, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20705414

RESUMO

Ghrelin, the natural ligand of the growth hormone secretagogue receptor (GHS-R1a), has been shown to stimulate growth hormone (GH) secretion. Regulation of ghrelin secretion in ruminants is not well studied. We investigated the effects of oxyntomodulin (OXM) and secretin on the secretions of ghrelin, insulin, glucagon, glucose, and nonesterified fatty acids (NEFA) in pre-ruminants (5 wk old) and ruminants (10 wk old) under normal physiological (feeding) conditions. Eight male Holstein calves (pre-ruminants: 52 +/- 1 kg body weight [BW]; and ruminants: 85 +/- 1 kg BW) were injected intravenously with 30 microg of OXM/kg BW, 50 microg of secretin/kg BW, and vehicle (0.1% bovine serum albumin [BSA] in saline as a control) in random order. Blood samples were collected, and plasma hormones and metabolites were analyzed using a double-antibody radioimmunoassay system and commercially available kits, respectively. We found that OXM increased the concentrations of insulin and glucose but did not affect the concentrations of ghrelin in both pre-ruminants and ruminants and that there was no effect of secretin on the concentrations of ghrelin, insulin, and glucose in these calves. We also investigated the dose-response effects of OXM on the secretion of insulin and glucose in 8 Holstein steers (401 +/- 1 d old, 398 +/- 10 kg BW). We found that OXM increased the concentrations of insulin and glucose even at physiological plasma concentrations, with a minimum effective dose of 0.4 microg/kg for the promotion of glucose secretion and 2 microg/kg for the stimulation of insulin secretion. These findings suggest that OXM takes part in glucose metabolism in ruminants.


Assuntos
Glicemia/análise , Bovinos/fisiologia , Grelina/metabolismo , Insulina/sangue , Oxintomodulina/farmacologia , Sequência de Aminoácidos , Animais , Bovinos/crescimento & desenvolvimento , Ácidos Graxos não Esterificados/sangue , Grelina/sangue , Glucagon/sangue , Masculino , Dados de Sequência Molecular , Oxintomodulina/fisiologia , Secretina/sangue , Secretina/farmacologia
6.
Domest Anim Endocrinol ; 38(1): 1-12, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19733462

RESUMO

The purpose of this study was to evaluate whether circulating ghrelin and growth hormone (GH) concentrations in cattle are regulated by endothelin-1 (ET-1), endothelin-3 (ET-3), and secretin. Six Holstein steers (242+/-1 d old, 280.5+/-4.4 kg body weight [BW]; mean+/-SEM) were allocated randomly in an incomplete Latin square design to receive each of 4 treatment compounds (vehicle, ET-1, ET-3, and secretin) with 1-d intervals between successive treatments. The treatment compounds were injected intravenously via a catheter inserted into the external jugular vein of each steer. Blood was sampled from the indwelling catheter at -30, -15, 0, 5, 10, 15, 20, 30, 45, 60, 90, 120, 150, and 180 min. Plasma ghrelin and GH responses to the treatment compounds were measured by a double-antibody radioimmunoassay system. Data were analyzed by using a MIXED procedure of SAS, version 9.1. Plasma acyl ghrelin, total ghrelin, and GH concentrations were increased by both ET-1 and ET-3 injection (ET-1 injection: 311+/-15 pg/mL vs 245+/-15 pg/mL, 2.4+/-0.2 ng/mL vs 1.61+/-0.05 ng/mL, 4.73+/-0.92 ng/mL vs 1.17+/-0.09 ng/mL for acyl ghrelin, total ghrelin, and GH, respectively; ET-3 injection: 337+/-27 pg/mL vs 245+/-15 pg/mL, 2.6+/-0.1 ng/mL vs 1.61+/-0.05 ng/mL, 5.56+/-0.97 ng/mL vs 1.17+/-0.09 ng/mL for acyl ghrelin, total ghrelin, and GH, respectively; P<0.01). Ghrelin and GH concentrations were not changed by secretin injection throughout the experimental periods. These results indicate that ET-1 and ET-3 stimulate ghrelin and GH secretion in cattle and demonstrate for the first time that endogenous ghrelin released in response to endothelin injection stimulates GH secretion in vivo in cattle.


Assuntos
Bovinos/fisiologia , Endotelina-1/farmacologia , Endotelina-3/farmacologia , Grelina/metabolismo , Hormônio do Crescimento/fisiologia , Secretina/farmacologia , Animais , Glicemia/metabolismo , Ácidos Graxos não Esterificados/sangue , Grelina/sangue , Glucagon/sangue , Hormônio do Crescimento/sangue , Insulina/sangue , Masculino , Distribuição Aleatória
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA