Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 466: 133627, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38301440

RESUMO

Aqueous film forming foam (AFFF)-impacted asphalt and concrete may serve as potential secondary sources of per- and polyfluoroalkyl substances (PFAS) to the environment through surficial leaching. We aimed to understand the vertical distribution and surficial release of PFAS from AFFF-impacted asphalt and concrete cores collected from various locations (∼10-70 m distance between samples). Among the PFAS analyzed, 6:2 FTS was observed as having the highest concentration in the surface layer (0 - 0.5 cm) of concrete (225 µg kg-1) and in the runoff from the concrete (2600 ng L-1). PFOS was detected at the highest concentration in the surface layer (0 - 0.5 cm) of asphalt (47 µg kg-1) and associated runoff (780 ng L-1). The total mass of PFAS released during three rainfall simulations accounts for a fraction of the total mass in the surface layer (0 - 0.5 cm), ranging from 0.10 - 9.8% and 0.078 - 2.4% for asphalt and concrete cores, respectively. Asphalt exhibited a higher release rate than concrete, demonstrated by the higher total release coefficient of PFAS (4 - 16 m-2) compared to that of concrete cores (1 - 5 m-2). These results suggested that, similar to concrete, AFFF-impacted asphalt may be a secondary source of PFAS to the environment.

2.
Environ Sci Technol ; 49(1): 132-40, 2015 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-25490066

RESUMO

Zinc is an important trace element pollutant in urban environments; however, the extent of Zn contamination and the sources of urban Zn pollution are often unclear. We measured Zn concentrations and isotopes in sediment cores collected from eight lakes or reservoirs across the United States. We paired these data with historical records of land use within each watershed to calculate a mean Zn concentration and δ(66)Zn for natural (less than 5% urban land use; 123 ± 21.7 mg/kg; +0.33 ± 0.08‰, n = 6 lakes) and urban (greater than 70% urban land use; 389 ± 200 mg/kg; +0.14 ± 0.07‰, n = 3 lakes) lake sediments. The relation between Zn concentration data and Zn isotope data allows us to create a mixing model between two end members: natural and urban. The δ(66)Zn of the urban end-member is consistent with Zn pollution from vehicle-related sources (tire wear and emissions). Application of this model to samples collected from lakes recording periods ranging from 5 to 70% urban land use in their surrounding watersheds indicates that the lakes and reservoirs were affected by large amounts of Zn from urban sources.


Assuntos
Lagos/análise , Urbanização , Zinco/análise , Cidades , Monitoramento Ambiental , Poluição Ambiental/análise , Sedimentos Geológicos/análise , Isótopos/análise , Oligoelementos/análise , Estados Unidos , Isótopos de Zinco/análise
3.
Environ Sci Technol ; 44(5): 1544-50, 2010 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-20143818

RESUMO

In this work, we use stable Zn and Cu isotopes to identify the sources and timing of the deposition of these metals in a sediment core from Lake Ballinger near Seattle, Washington, USA. The base of the Lake Ballinger core predates settlement in the region, while the upper sections record the effects of atmospheric emissions from a nearby smelter and rapid urbanization of the watershed. delta(66)Zn and delta(65)Cu varied by 0.50 per thousand and 0.29 per thousand, respectively, over the 500 year core record. Isotopic changes were correlated with the presmelter period ( approximately 1450 to 1900 with delta(66)Zn = +0.39 per thousand +/- 0.09 per thousand and delta(65)Cu = +0.77 per thousand +/- 0.06 per thousand), period of smelter operation (1900 to 1985 with delta(66)Zn = +0.14 +/- 0.06 per thousand and delta(65)Cu = +0.94 +/- 0.10 per thousand), and postsmelting/stable urban land use period (post 1985 with delta(66)Zn = 0.00 +/- 0.10 per thousand and delta(65)Cu = +0.82 per thousand +/- 0.12 per thousand). Rapid early urbanization during the post World War II era increased metal loading to the lake but did not significantly alter the delta(66)Zn and delta(65)Cu, suggesting that increased metal loads during this time were derived mainly from mobilization of historically contaminated soils. Urban sources of Cu and Zn were dominant since the smelter closed in the 1980s, and the delta(66)Zn measured in tire samples suggests tire wear is a likely source of Zn.


Assuntos
Cobre/análise , Monitoramento Ambiental/métodos , Água Doce , Sedimentos Geológicos/análise , Poluentes Químicos da Água/análise , Isótopos de Zinco/análise , Humanos , Isótopos/análise , Fatores de Tempo , Oligoelementos/análise , Saúde da População Urbana , Urbanização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA