Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biomater Sci ; 11(19): 6561-6572, 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37594048

RESUMO

Antibiotic lock therapy (ALT) is standard clinical practice for treating bacteremia linked with catheter-related bloodstream infections (CRBSIs). However, this strategy frequently fails against multi-drug-resistant bacteria in clinical settings. In this study, a novel approach to utilize a nitric oxide (NO) donor S-nitroso-N-acetyl-penicillamine (SNAP)-conjugated to ampicillin antibiotic (namely SNAPicillin) as a catheter lock solution is presented. The conjugate of two antimicrobial agents is anticipated to overcome the challenges of bacterial infection caused by antibiotic-resistant bacteria in ALT applications. Nitric oxide release from the SNAPicillin lock solution at varying concentrations was measured at 0 and 24 h time points in a catheter model system, which revealed tunable NO release at physiological levels. The clinical strains of E. coli (CDC AR-0089) and S. marcescens (CDC AR-0099) were screened using a zone of inhibition assay against standard antibiotics which confirmed the antibiotic resistance in bacteria. The minimum inhibitory concentration (MIC) testing of SNAPicillin unveiled the lowest MIC value for SNAPicillin against both E. coli and S. marcescens (1 and 2 mM of SNAPicillin, respectively) with an 8.24- and 4.28-log reduction in bacterial load compared to controls, respectively. In addition, while the ampicillin-treated biofilm demonstrated resistance toward the antibiotic, SNAPicillin led to >99% reduction in exterminating biofilm buildup on polymeric catheter surfaces. Lastly, the SNAPicillin lock solution was determined to be biocompatible via hemolysis and cell compatibility studies. Together, these results emphasize the promising potential of SNAPicillin lock solution with the dual-action of NO and ampicillin in overcoming bacterial challenges on medical devices like central venous catheters and other medical device interfaces.


Assuntos
Anti-Infecciosos , Infecções Relacionadas a Cateter , Humanos , Antibacterianos , Óxido Nítrico , Escherichia coli , Infecções Relacionadas a Cateter/tratamento farmacológico , Infecções Relacionadas a Cateter/prevenção & controle , Infecções Relacionadas a Cateter/microbiologia , Ampicilina/farmacologia , Anti-Infecciosos/uso terapêutico , Bactérias , Catéteres , Doadores de Óxido Nítrico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA