Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 137
Filtrar
1.
Front Endocrinol (Lausanne) ; 15: 1374825, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38742194

RESUMO

Increasing evidence suggests that female individuals have a higher Alzheimer's disease (AD) risk associated with post-menopausal loss of circulating estradiol (E2). However, clinical data are conflicting on whether E2 lowers AD risk. One potential contributing factor is APOE. The greatest genetic risk factor for AD is APOE4, a factor that is pronounced in female individuals post-menopause. Clinical data suggests that APOE impacts the response of AD patients to E2 replacement therapy. However, whether APOE4 prevents, is neutral, or promotes any positive effects of E2 is unclear. Therefore, our goal was to determine whether APOE modulates the impact of E2 on behavior and AD pathology in vivo. To that end, mice that express human APOE3 (E3FAD) or APOE4 (E4FAD) and overproduce Aß42 were ovariectomized at either 4 months (early) or 8 months (late) and treated with vehicle or E2 for 4 months. In E3FAD mice, we found that E2 mitigated the detrimental effect of ovariectomy on memory, with no effect on Aß in the early paradigm and only improved learning in the late paradigm. Although E2 lowered Aß in E4FAD mice in the early paradigm, there was no impact on learning or memory, possibly due to higher Aß pathology compared to E3FAD mice. In the late paradigm, there was no effect on learning/memory and Aß pathology in E4FAD mice. Collectively, these data support the idea that, in the presence of Aß pathology, APOE impacts the response to E2 supplementation post-menopause.


Assuntos
Doença de Alzheimer , Apolipoproteína E3 , Apolipoproteína E4 , Estradiol , Camundongos Transgênicos , Ovariectomia , Animais , Estradiol/farmacologia , Feminino , Apolipoproteína E3/genética , Apolipoproteína E3/metabolismo , Camundongos , Apolipoproteína E4/genética , Apolipoproteína E4/metabolismo , Doença de Alzheimer/metabolismo , Doença de Alzheimer/genética , Humanos , Comportamento Animal/efeitos dos fármacos , Peptídeos beta-Amiloides/metabolismo , Modelos Animais de Doenças
2.
J Med Chem ; 67(8): 5999-6026, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38580317

RESUMO

Nicotinamide phosphoribosyltransferase (NAMPT) catalyzes the rate-limiting step in NAD+ biosynthesis via salvage of NAM formed from catabolism of NAD+ by proteins with NADase activity (e.g., PARPs, SIRTs, CD38). Depletion of NAD+ in aging, neurodegeneration, and metabolic disorders is addressed by NAD+ supplementation. Conversely, NAMPT inhibitors have been developed for cancer therapy: many discovered by phenotypic screening for cancer cell death have low nanomolar potency in cellular models. No NAMPT inhibitor is yet FDA-approved. The ability of inhibitors to act as NAMPT substrates may be associated with efficacy and toxicity. Some 3-pyridyl inhibitors become 4-pyridyl activators or "NAD+ boosters". NAMPT positive allosteric modulators (N-PAMs) and boosters may increase enzyme activity by relieving substrate/product inhibition. Binding to a "rear channel" extending from the NAMPT active site is key for inhibitors, boosters, and N-PAMs. A deeper understanding may fulfill the potential of NAMPT ligands to regulate cellular life and death.


Assuntos
Inibidores Enzimáticos , Nicotinamida Fosforribosiltransferase , Nicotinamida Fosforribosiltransferase/metabolismo , Nicotinamida Fosforribosiltransferase/antagonistas & inibidores , Humanos , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Animais , Neoplasias/tratamento farmacológico , NAD/metabolismo , Regulação Alostérica/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Antineoplásicos/farmacologia , Antineoplásicos/química , Citocinas/metabolismo
3.
ACS Med Chem Lett ; 15(2): 205-214, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38352833

RESUMO

Evidence supports boosting nicotinamide adenine dinucleotide (NAD+) to counteract oxidative stress in aging and neurodegenerative disease. One approach is to enhance the activity of nicotinamide phosphoribosyltransferase (NAMPT). Novel NAMPT positive allosteric modulators (N-PAMs) were identified. A cocrystal structure confirmed N-PAM binding to the NAMPT rear channel. Early hit-to-lead efforts led to a 1.88-fold maximum increase in the level of NAD+ in human THP-1 cells. Select N-PAMs were assessed for mitigation of reactive oxygen species (ROS) in HT-22 neuronal cells subject to inflammatory stress using tumor necrosis factor alpha (TNFα). N-PAMs that increased NAD+ more effectively in THP-1 cells attenuated TNFα-induced ROS more effectively in HT-22 cells. The most efficacious N-PAM completely attenuated ROS elevation in glutamate-stressed HT-22 cells, a model of neuronal excitotoxicity. This work demonstrates for the first time that N-PAMs are capable of mitigating elevated ROS in neurons stressed with TNFα and glutamate and provides support for further N-PAM optimization for treatment of neurodegenerative diseases.

4.
J Med Chem ; 67(4): 2712-2731, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38295759

RESUMO

The bromodomain and extra-terminal domain (BET) proteins are epigenetic readers, regulating transcription via two highly homologous tandem bromodomains, BD1 and BD2. Clinical development of nonselective pan-BD BET inhibitors has been challenging, partly due to dose-limiting side effects such as thrombocytopenia. This has prompted the push for domain-selective BET inhibitors to achieve a more favorable therapeutic window. We report a structure-guided drug design campaign that led to the development of a potent BD1-selective BET inhibitor, 33 (XL-126), with a Kd of 8.9 nM and 185-fold BD1/BD2 selectivity. The high selectivity was first assayed by SPR, validated by a secondary time-resolved fluorescence energy transfer assay, and further corroborated by BROMOscan (∼57-373 fold selectivity). The cocrystal of 33 with BRD4 BD1 and BD2 demonstrates the source of selectivity: repulsion with His437 and lost binding with the leucine clamp. Notably, the BD1 selectivity of BET inhibitor 33 leads to both the preservation of platelets and potent anti-inflammatory efficacy.


Assuntos
Proteínas Nucleares , Fatores de Transcrição , Fatores de Transcrição/metabolismo , Proteínas Nucleares/metabolismo , Domínios Proteicos , Anti-Inflamatórios/farmacologia , Piridonas/farmacologia , Proteínas de Ciclo Celular/metabolismo
5.
J Med Chem ; 66(24): 16704-16727, 2023 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-38096366

RESUMO

Depletion of nicotinamide adenine dinucleotide (NAD+) is associated with aging and disease, spurring the study of dietary supplements to replenish NAD+. The catabolism of NAD+ to nicotinamide (NAM) requires the salvage of NAM to replenish cellular NAD+, which relies on the rate-limiting enzyme nicotinamide phosphoribosyltransferase (NAMPT). Pharmacological activation of NAMPT provides an alternative to dietary supplements. Screening for activators of NAMPT identified small molecule NAMPT positive allosteric modulators (N-PAMs). N-PAMs bind to the rear channel of NAMPT increasing enzyme activity and alleviating feedback inhibition by NAM and NAD+. Synthesis of over 70 N-PAMs provided an excellent correlation between rear channel binding affinity and potency for enzyme activation, confirming the mechanism of allosteric activation via binding to the rear channel. The mechanism accounts for higher binding affinity leading to loss of efficacy. Enzyme activation translated directly to elevation of NAD+ measured in cells. Optimization led to an orally bioavailable N-PAM.


Assuntos
NAD , Nicotinamida Fosforribosiltransferase , Nicotinamida Fosforribosiltransferase/química , Nicotinamida Fosforribosiltransferase/metabolismo , NAD/metabolismo , Niacinamida/farmacologia , Linhagem Celular Tumoral , Citocinas/metabolismo , Relação Estrutura-Atividade
6.
Nat Commun ; 14(1): 3737, 2023 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-37349300

RESUMO

Only praziquantel is available for treating schistosomiasis, a disease affecting more than 200 million people. Praziquantel-resistant worms have been selected for in the lab and low cure rates from mass drug administration programs suggest that resistance is evolving in the field. Thioredoxin glutathione reductase (TGR) is essential for schistosome survival and a validated drug target. TGR inhibitors identified to date are irreversible and/or covalent inhibitors with unacceptable off-target effects. In this work, we identify noncovalent TGR inhibitors with efficacy against schistosome infections in mice, meeting the criteria for lead progression indicated by WHO. Comparisons with previous in vivo studies with praziquantel suggests that these inhibitors outperform the drug of choice for schistosomiasis against juvenile worms.


Assuntos
Esquistossomose , Esquistossomicidas , Animais , Camundongos , Esquistossomicidas/farmacologia , Esquistossomicidas/uso terapêutico , Praziquantel/farmacologia , Schistosoma , NADH NADPH Oxirredutases/farmacologia , NADH NADPH Oxirredutases/uso terapêutico , Schistosoma mansoni
7.
Neurotherapeutics ; 20(4): 1120-1137, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37157042

RESUMO

APOE4, encoding apolipoprotein E4 (apoE4), is the greatest genetic risk factor for Alzheimer's disease (AD), compared to the common APOE3. While the mechanism(s) underlying APOE4-induced AD risk remains unclear, increasing the lipidation of apoE4 is an important therapeutic target as apoE4-lipoproteins are poorly lipidated compared to apoE3-lipoproteins. ACAT (acyl-CoA: cholesterol-acyltransferase) catalyzes the formation of intracellular cholesteryl-ester droplets, reducing the intracellular free cholesterol (FC) pool. Thus, inhibiting ACAT increases the FC pool and facilitates lipid secretion to extracellular apoE-containing lipoproteins. Previous studies using commercial ACAT inhibitors, including avasimibe (AVAS), as well as ACAT-knock out (KO) mice, exhibit reduced AD-like pathology and amyloid precursor protein (APP) processing in familial AD (FAD)-transgenic (Tg) mice. However, the effects of AVAS with human apoE4 remain unknown. In vitro, AVAS induced apoE efflux at concentrations of AVAS measured in the brains of treated mice. AVAS treatment of male E4FAD-Tg mice (5xFAD+/-APOE4+/+) at 6-8 months had no effect on plasma cholesterol levels or distribution, the original mechanism for AVAS treatment of CVD. In the CNS, AVAS reduced intracellular lipid droplets, indirectly demonstrating target engagement. Surrogate efficacy was demonstrated by an increase in Morris water maze measures of memory and postsynaptic protein levels. Amyloid-beta peptide (Aß) solubility/deposition and neuroinflammation were reduced, critical components of APOE4-modulated pathology. However, there was no increase in apoE4 levels or apoE4 lipidation, while amyloidogenic and non-amyloidogenic processing of APP were significantly reduced. This suggests that the AVAS-induced reduction in Aß via reduced APP processing was sufficient to reduce AD pathology, as apoE4-lipoproteins remained poorly lipidated.


Assuntos
Doença de Alzheimer , Masculino , Camundongos , Humanos , Animais , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Apolipoproteína E4/genética , Apolipoproteína E4/metabolismo , Apolipoproteína E3/genética , Apolipoproteínas E , Peptídeos beta-Amiloides/metabolismo , Camundongos Transgênicos , Camundongos Knockout , Colesterol
8.
Biochemistry ; 62(4): 923-933, 2023 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-36746631

RESUMO

In aging and disease, cellular nicotinamide adenine dinucleotide (NAD+) is depleted by catabolism to nicotinamide (NAM). NAD+ supplementation is being pursued to enhance human healthspan and lifespan. Activation of nicotinamide phosphoribosyltransferase (NAMPT), the rate-limiting step in NAD+ biosynthesis, has the potential to increase the salvage of NAM. Novel NAMPT-positive allosteric modulators (N-PAMs) were discovered in addition to the demonstration of NAMPT activation by biogenic phenols. The mechanism of activation was revealed through the synthesis of novel chemical probes, new NAMPT co-crystal structures, and enzyme kinetics. Binding to a rear channel in NAMPT regulates NAM binding and turnover, with biochemical observations being replicated by NAD+ measurements in human cells. The mechanism of action of N-PAMs identifies, for the first time, the role of the rear channel in the regulation of NAMPT turnover coupled to productive and nonproductive NAM binding. The tight regulation of cellular NAMPT via feedback inhibition by NAM, NAD+, and adenosine 5'-triphosphate (ATP) is differentially regulated by N-PAMs and other activators, indicating that different classes of pharmacological activators may be engineered to restore or enhance NAD+ levels in affected tissues.


Assuntos
NAD , Nicotinamida Fosforribosiltransferase , Humanos , Citocinas/metabolismo , Longevidade , NAD/metabolismo , Niacinamida/farmacologia , Niacinamida/metabolismo , Nicotinamida Fosforribosiltransferase/química , Nicotinamida Fosforribosiltransferase/metabolismo , Sítio Alostérico
9.
Oncogene ; 42(14): 1132-1143, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36813855

RESUMO

Mixed Lineage Kinase 3 (MLK3) is a viable target for neoplastic diseases; however, it is unclear whether its activators or inhibitors can act as anti-neoplastic agents. We reported that the MLK3 kinase activity was higher in triple-negative (TNBC) than in hormone receptor-positive human breast tumors, where estrogen inhibited MLK3 kinase activity and provided a survival advantage to ER+ breast cancer cells. Herein, we show that in TNBC, the higher MLK3 kinase activity paradoxically promotes cancer cell survival. Knockdown of MLK3 or MLK3 inhibitors, CEP-1347 and URMC-099, attenuated tumorigenesis of TNBC cell line and Patient-Derived (PDX) xenografts. The MLK3 kinase inhibitors decreased both the expression and activation of MLK3, PAK1, and NF-kB protein and caused cell death in TNBC breast xenografts. RNA-seq analysis identified several genes downregulated by MLK3 inhibition, and the NGF/TrkA MAPK pathway was significantly enriched in tumors sensitive to growth inhibition by MLK3 inhibitors. The TNBC cell line unresponsive to kinase inhibitor had substantially lower TrkA, and overexpression of TrkA restored the sensitivity to MLK3 inhibition. These results suggest that the functions of MLK3 in breast cancer cells depend on downstream targets in TNBC tumors expressing TrkA, and MLK3 kinase inhibition may provide a novel targeted therapy.


Assuntos
Antineoplásicos , Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Linhagem Celular Tumoral , MAP Quinase Quinase Quinases/metabolismo , Estrogênios , Receptores Proteína Tirosina Quinases , MAP Quinase Quinase Quinase 11 Ativada por Mitógeno
10.
J Med Chem ; 65(20): 14104-14120, 2022 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-36260129

RESUMO

The influenza A virus (IAV) is a highly contagious virus that causes pandemics and seasonal epidemics, which are major public health issues. Current anti-influenza therapeutics are limited partly due to the continuous emergence of drug-resistant IAV strains; thus, there is an unmet need to develop novel anti-influenza therapies. Here, we present a novel imidazo[1,2-a]pyrimidine scaffold that targets group 2 IAV entry. We have explored three different regions of the lead compound, and we have developed a series of small molecules that have nanomolar activity against oseltamivir-sensitive and -resistant forms of group 2 IAVs. These small molecules target hemagglutinin (HA), which mediates the viral entry process. Mapping a known small-molecule-binding cavity of the HA structure with resistant mutants suggests that these molecules bind to that cavity and block HA-mediated membrane fusion.


Assuntos
Vírus da Influenza A , Influenza Humana , Humanos , Vírus da Influenza A/metabolismo , Oseltamivir , Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Hemaglutininas , Influenza Humana/tratamento farmacológico , Relação Estrutura-Atividade , Pirimidinas/farmacologia , Antivirais/farmacologia , Antivirais/química
11.
Alcohol Clin Exp Res ; 46(7): 1313-1320, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35581531

RESUMO

BACKGROUND: Greater circulating levels of the steroid hormone 17ß-estradiol (E2) are associated with higher levels of binge drinking in women. In female mice, estrogen receptors in the ventral tegmental area, a dopaminergic region of the brain involved in the motivation to consume ethanol, regulate binge-like ethanol intake. We recently developed a brain-penetrant selective estrogen receptor degrader (SERD), YL3-122, that could be used to test the behavioral role of brain estrogen receptors. We hypothesized that treating female mice with this compound would reduce binge-like ethanol drinking. METHODS: Female C57BL/6J mice were treated systemically with YL3-122 and a related SERD with low brain penetrance, XR5-27, and tested for binge-like ethanol consumption in the drinking in the dark (DID) test. Mice were also tested for sucrose and water consumption and blood ethanol clearance after treatment with the SERDs. Finally, the effect of ethanol exposure on Esr1 gene expression was measured in the ventral tegmental area (VTA), prefrontal cortex (PFC), and ventral hippocampus (vHPC) of male and female mice by quantitative real-time PCR after 4 DID sessions. RESULTS: YL3-122 reduced ethanol consumption when mice were in diestrus but not estrus. YL3-122 also decreased sucrose consumption but did not alter water intake or blood ethanol clearance. XR5-27 did not affect any of these measures. Binge-like ethanol drinking resulted in increased Esr1 transcript in the VTA of both sexes, male vHPC, and female PFC. CONCLUSIONS: These results indicate that SERD treatment can decrease binge-like ethanol drinking in female mice. Thus, it could be a novel strategy to reduce binge drinking in women, with the caveat that effectiveness may depend on menstrual cycle phase. In addition, Esr1 transcript is increased by binge ethanol exposure in both sexes but in a brain region-specific manner.


Assuntos
Consumo Excessivo de Bebidas Alcoólicas , Consumo de Bebidas Alcoólicas/genética , Animais , Consumo Excessivo de Bebidas Alcoólicas/tratamento farmacológico , Consumo Excessivo de Bebidas Alcoólicas/metabolismo , Etanol , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Receptores de Estrogênio , Sacarose/farmacologia , Área Tegmentar Ventral
12.
Acta Pharm Sin B ; 12(3): 995-1018, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35530134

RESUMO

The function of ATP binding cassette protein A1 (ABCA1) is central to cholesterol mobilization. Reduced ABCA1 expression or activity is implicated in Alzheimer's disease (AD) and other disorders. Therapeutic approaches to boost ABCA1 activity have yet to be translated successfully to the clinic. The risk factors for AD development and progression, including comorbid disorders such as type 2 diabetes and cardiovascular disease, highlight the intersection of cholesterol transport and inflammation. Upregulation of ABCA1 can positively impact APOE lipidation, insulin sensitivity, peripheral vascular and blood-brain barrier integrity, and anti-inflammatory signaling. Various strategies towards ABCA1-boosting compounds have been described, with a bias toward nuclear hormone receptor (NHR) agonists. These agonists display beneficial preclinical effects; however, important side effects have limited development. In particular, ligands that bind liver X receptor (LXR), the primary NHR that controls ABCA1 expression, have shown positive effects in AD mouse models; however, lipogenesis and unwanted increases in triglyceride production are often observed. The longstanding approach, focusing on LXRß vs. LXRα selectivity, is over-simplistic and has failed. Novel approaches such as phenotypic screening may lead to small molecule NHR modulators that elevate ABCA1 function without inducing lipogenesis and are clinically translatable.

13.
Antioxidants (Basel) ; 11(2)2022 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-35204103

RESUMO

To evaluate the differences in action of commercially available 2-oxoglutarate mimetics and "branched-tail" oxyquinoline inhibitors of hypoxia-inducible factor prolyl hydroxylase (HIF PHD), the inhibitors' IC50 values in the activation of HIF1 ODD-luciferase reporter were selected for comparative transcriptomics. Structure-activity relationship and computer modeling for the oxyquinoline series of inhibitors led to the identification of novel inhibitors, which were an order of magnitude more active in the reporter assay than roxadustat and vadadustat. Unexpectedly, 2-methyl-substitution in the oxyquinoline core of the best HIF PHD inhibitor was found to be active in the reporter assay and almost equally effective in the pretreatment paradigm of the oxygen-glucose deprivation in vitro model. Comparative transcriptomic analysis of the signaling pathways induced by HIF PHD inhibitors showed high potency of the two novel oxyquinoline inhibitors (#4896-3249 and #5704-0720) at 2 µM concentrations matching the effect of 30 µM roxadustat and 500 µM dimethyl oxalyl glycine in inducing HIF1 and HIF2-linked pathways. The two oxyquinoline inhibitors exerted the same activation of HIF-triggered glycolytic pathways but opposite effects on signaling pathways linked to alternative substrates of HIF PHD 1 and 3, such as p53, NF-κB, and ATF4. This finding can be interpreted as the specificity of the 2-methyl-substitute variant for HIF PHD2.

14.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35064087

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is associated with extensive dysregulation of the epigenome and epigenetic regulators, such as bromodomain and extraterminal motif (BET) proteins, have been suggested as potential targets for therapy. However, single-agent BET inhibition has shown poor efficacy in clinical trials, and no epigenetic approaches are currently used in PDAC. To circumvent the limitations of the current generation of BET inhibitors, we developed the compound XP-524 as an inhibitor of the BET protein BRD4 and the histone acetyltransferase EP300/CBP, both of which are ubiquitously expressed in PDAC tissues and cooperate to enhance tumorigenesis. XP-524 showed increased potency and superior tumoricidal activity than the benchmark BET inhibitor JQ-1 in vitro, with comparable efficacy to higher-dose JQ-1 combined with the EP300/CBP inhibitor SGC-CBP30. We determined that this is in part due to the epigenetic silencing of KRAS in vitro, with similar results observed using ex vivo slice cultures of human PDAC tumors. Accordingly, XP-524 prevented KRAS-induced, neoplastic transformation in vivo and extended survival in two transgenic mouse models of aggressive PDAC. In addition to the inhibition of KRAS/MAPK signaling, XP-524 also enhanced the presentation of self-peptide and tumor recruitment of cytotoxic T lymphocytes, though these lymphocytes remained refractory from full activation. We, therefore, combined XP-524 with an anti-PD-1 antibody in vivo, which reactivated the cytotoxic immune program and extended survival well beyond XP-524 in monotherapy. Pending a comprehensive safety evaluation, these results suggest that XP-524 may benefit PDAC patients and warrant further exploration, particularly in combination with immune checkpoint inhibition.


Assuntos
Antineoplásicos/farmacologia , Proteína p300 Associada a E1A/antagonistas & inibidores , Inibidores de Checkpoint Imunológico/farmacologia , Proteínas/antagonistas & inibidores , Proteínas Proto-Oncogênicas p21(ras)/antagonistas & inibidores , Animais , Antineoplásicos/química , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Modelos Animais de Doenças , Sinergismo Farmacológico , Proteína p300 Associada a E1A/química , Regulação da Expressão Gênica , Humanos , Estimativa de Kaplan-Meier , Camundongos , Modelos Moleculares , Conformação Molecular , Estrutura Molecular , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Proteínas Proto-Oncogênicas p21(ras)/química , Relação Estrutura-Atividade , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Resultado do Tratamento , Ensaios Antitumorais Modelo de Xenoenxerto
15.
J Med Chem ; 65(4): 2940-2955, 2022 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-34665619

RESUMO

Antiviral agents that complement vaccination are urgently needed to end the COVID-19 pandemic. The SARS-CoV-2 papain-like protease (PLpro), one of only two essential cysteine proteases that regulate viral replication, also dysregulates host immune sensing by binding and deubiquitination of host protein substrates. PLpro is a promising therapeutic target, albeit challenging owing to featureless P1 and P2 sites recognizing glycine. To overcome this challenge, we leveraged the cooperativity of multiple shallow binding sites on the PLpro surface, yielding novel 2-phenylthiophenes with nanomolar inhibitory potency. New cocrystal structures confirmed that ligand binding induces new interactions with PLpro: by closing of the BL2 loop of PLpro forming a novel "BL2 groove" and by mimicking the binding interaction of ubiquitin with Glu167 of PLpro. Together, this binding cooperativity translates to the most potent PLpro inhibitors reported to date, with slow off-rates, improved binding affinities, and low micromolar antiviral potency in SARS-CoV-2-infected human cells.


Assuntos
Antivirais/farmacologia , Tratamento Farmacológico da COVID-19 , Proteases Semelhantes à Papaína de Coronavírus/antagonistas & inibidores , Inibidores de Cisteína Proteinase/farmacologia , Antivirais/síntese química , Antivirais/química , Sítios de Ligação/efeitos dos fármacos , COVID-19/metabolismo , Proteases Semelhantes à Papaína de Coronavírus/isolamento & purificação , Proteases Semelhantes à Papaína de Coronavírus/metabolismo , Cristalografia por Raios X , Inibidores de Cisteína Proteinase/síntese química , Inibidores de Cisteína Proteinase/química , Humanos , Testes de Sensibilidade Microbiana , Microssomos Hepáticos/química , Microssomos Hepáticos/metabolismo , Modelos Moleculares , Pandemias , Ressonância de Plasmônio de Superfície , Células Tumorais Cultivadas
16.
Oncogene ; 40(43): 6153-6165, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34511598

RESUMO

MAP4K4 is a Ste20 member and reported to play important roles in various pathologies, including in cancer. However, the mechanism by which MAP4K4 promotes pancreatic cancer is not fully understood. It is suggested that MAP4K4 might function as a cancer promoter via specific downstream target(s) in an organ-specific manner. Here we identified MLK3 as a direct downstream target of MAP4K4. The MAP4K4 and MLK3 associates with each other, and MAP4K4 phosphorylates MLK3 on Thr738 and increases MLK3 kinase activity and downstream signaling. The phosphorylation of MLK3 by MAP4K4 promotes pancreatic cancer cell proliferation, migration, and colony formation. Moreover, MAP4K4 is overexpressed in human pancreatic tumors and directly correlates with the disease progression. The MAP4K4-specific pharmacological inhibitor, GNE-495, impedes pancreatic cancer cell growth, migration, induces cell death, and arrests cell cycle progression. Additionally, the GNE-495 reduced the tumor burden and extended survival of the KPC mice with pancreatic cancer. The MAP4K4 inhibitor also reduced MAP4K4 protein expression, tumor stroma, and induced cell death in murine pancreatic tumors. These findings collectively suggest that MLK3 phosphorylation by MAP4K4 promotes pancreatic cancer, and therefore therapies targeting MAP4K4 might alleviate the pancreatic cancer tumor burden in patients.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , MAP Quinase Quinase Quinases/metabolismo , Neoplasias Pancreáticas/patologia , Proteínas Serina-Treonina Quinases/metabolismo , Regulação para Cima , Animais , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/química , Camundongos , Transplante de Neoplasias , Neoplasias Pancreáticas/metabolismo , Fosforilação , Proteínas Serina-Treonina Quinases/química , Treonina/química , MAP Quinase Quinase Quinase 11 Ativada por Mitógeno
17.
Neurochem Int ; 149: 105148, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34329734

RESUMO

Aspirin is a desired leaving group in prodrugs aimed at treatment of neurodegeneration and other conditions. A library of aspirin derivatives of various scaffolds potentially activating Nrf2 has been tested in Neh2-luc reporter assay which screens for direct Nrf2 protein stabilizers working via disruption of Nrf2-Keap1 interaction. Most aspirin prodrugs had a pro-alkylating or pro-oxidant motif in the structure and, therefore, were toxic at high concentrations. However, among the active compounds, we identified a molecule resembling a well-known Nrf2 displacement activator, bis-1,4-(4-methoxybenzenesulfonamidyl) naphthalene (NMBSA). The direct comparison of the newly identified compound with NMBSA and its improved analog in the reporter assay showed no quenching with N-acetyl cysteine, thus pointing to Nrf2 stabilization mechanism without cysteine alkylation. The potency of the newly identified compound in the reporter assay was much stronger than NMBSA, despite its inhibitory action in the commercial fluorescence polarization assay was observed only in the millimolar range. Molecular docking predicted that mono-deacetylation of the novel prodrug should generate a potent displacement activator. The time-course of reporter activation with the novel prodrug had a pronounced lag-period pointing to a plausible intracellular transformation leading to an active product. Treatment of the novel prodrug with blood plasma or cell lysate demonstrated stepwise deacetylation as judge by liquid chromatography-mass spectrometry (LC-MS). Hence, the esterase-catalyzed hydrolysis of the prodrug liberates only acetyl groups from aspirin moiety and generates a potent Nrf2 activator. The discovered mechanism of prodrug activation makes the newly identified compound a promising lead for future optimization studies.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Aspirina/farmacologia , Fator 2 Relacionado a NF-E2/metabolismo , Pró-Fármacos/farmacologia , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Humanos , Fator 2 Relacionado a NF-E2/agonistas , Estrutura Terciária de Proteína
18.
ACS Infect Dis ; 7(7): 1932-1944, 2021 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-33950676

RESUMO

Fragment screening is a powerful drug discovery approach particularly useful for enzymes difficult to inhibit selectively, such as the thiol/selenol-dependent thioredoxin reductases (TrxRs), which are essential and druggable in several infectious diseases. Several known inhibitors are reactive electrophiles targeting the selenocysteine-containing C-terminus and thus often suffering from off-target reactivity in vivo. The lack of structural information on the interaction modalities of the C-terminus-targeting inhibitors, due to the high mobility of this domain and the lack of alternative druggable sites, prevents the development of selective inhibitors for TrxRs. In this work, fragments selected from actives identified in a large screen carried out against Thioredoxin Glutathione Reductase from Schistosoma mansoni (SmTGR) were probed by X-ray crystallography. SmTGR is one of the most promising drug targets for schistosomiasis, a devastating, neglected disease. Utilizing a multicrystal method to analyze electron density maps, structural analysis, and functional studies, three binding sites were characterized in SmTGR: two sites are close to or partially superposable with the NADPH binding site, while the third one is found between two symmetry related SmTGR subunits of the crystal lattice. Surprisingly, one compound bound to this latter site stabilizes, through allosteric effects mediated by the so-called guiding bar residues, the crucial redox active C-terminus of SmTGR, making it finally visible at high resolution. These results further promote fragments as small molecule probes for investigating functional aspects of the target protein, exemplified by the allosteric effect on the C-terminus, and providing fundamental chemical information exploitable in drug discovery.


Assuntos
Antiparasitários/química , Schistosoma mansoni/efeitos dos fármacos , Animais , Complexos Multienzimáticos , NADH NADPH Oxirredutases/genética
19.
Front Neurosci ; 15: 628403, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33642985

RESUMO

Evidence suggests that angiotensin receptor blockers (ARBs) could be beneficial for Alzheimer's disease (AD) patients independent of any effects on hypertension. However, studies in rodent models directly testing the activity of ARB treatment on behavior and AD-relevent pathology including neuroinflammation, Aß levels, and cerebrovascular function, have produced mixed results. APOE4 is a major genetic risk factor for AD and has been linked to many of the same functions as those purported to be modulated by ARB treatment. Therefore, evaluating the effects of ARB treatment on behavior and AD-relevant pathology in mice that express human APOE4 could provide important information on whether to further develop ARBs for AD therapy. In this study, we treated female and male mice that express the human APOE4 gene in the absence (E4FAD-) or presence (E4FAD+) of high Aß levels with the ARB prodrug candesartan cilexetil for a duration of 4 months. Compared to vehicle, candesartan treatment resulted in greater memory-relevant behavior and higher hippocampal presynaptic protein levels in female, but not male, E4FAD- and E4FAD+ mice. The beneficial effects of candesartan in female E4FAD- and E4FAD+ mice occurred in tandem with lower GFAP and Iba1 levels in the hippocampus, whereas there were no effects on markers of cerebrovascular function and Aß levels. Collectively, these data imply that the effects of ARBs on AD-relevant pathology may be modulated in part by the interaction between APOE genotype and biological sex. Thus, the further development of ARBs could provide therapeutic options for targeting neuroinflammation in female APOE4 carriers.

20.
EBioMedicine ; 66: 103287, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33752129

RESUMO

BACKGROUND: Therapeutic agents with novel mechanisms of action are needed to combat the growing epidemic of type 2 diabetes (T2D) and related metabolic syndromes. Liver X receptor (LXR) agonists possess preclinical efficacy yet produce side effects due to excessive lipogenesis. Anticipating that many beneficial and detrimental effects of LXR agonists are mediated by ABCA1 and SREPB1c expression, respectively, we hypothesized that a phenotypic optimization strategy prioritizing selective ABCA1 induction would identify an efficacious lead compound with an improved side effect profile over existing LXRß agonists. METHODS: We synthesized and characterized a novel small molecule for selective induction of ABCA1 vs. SREBP1c in vitro. This compound was evaluated in both wild-type mice and a high-fat diet (HFD) mouse model of obesity-driven diabetes through functional, biochemical, and metabolomic analysis. FINDINGS: Six weeks of oral administration of our lead compound attenuated weight gain, glucose intolerance, insulin signaling deficits, and adiposity. Global metabolomics revealed suppression of gluconeogenesis, free fatty acids, and pro-inflammatory metabolites. Target identification linked these beneficial effects to selective LXRß agonism and PPAR/RXR antagonism. INTERPRETATION: Our observations in the HFD model, combined with the absence of lipogenesis and neutropenia in WT mice, support this novel approach to therapeutic development for T2D and related conditions.


Assuntos
Transportador 1 de Cassete de Ligação de ATP/agonistas , Metaboloma , Metabolômica , Obesidade/etiologia , Obesidade/metabolismo , Adiposidade/efeitos dos fármacos , Animais , Biomarcadores , Citocinas/metabolismo , Dieta Hiperlipídica , Modelos Animais de Doenças , Suscetibilidade a Doenças , Desenvolvimento de Medicamentos , Intolerância à Glucose , Mediadores da Inflamação/metabolismo , Resistência à Insulina , Lipídeos/sangue , Lipogênese , Receptores X do Fígado/agonistas , Masculino , Metabolômica/métodos , Camundongos , Terapia de Alvo Molecular , Obesidade/tratamento farmacológico , Receptores Ativados por Proliferador de Peroxissomo/antagonistas & inibidores , RNA Interferente Pequeno/genética , Receptores X de Retinoides/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA