Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mol Plant ; 14(11): 1918-1934, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34314894

RESUMO

Eukaryotic organisms are equipped with quality-control mechanisms that survey protein folding in the endoplasmic reticulum (ER) and remove non-native proteins by ER-associated degradation (ERAD). Recent research has shown that cytokinin-degrading CKX proteins are subjected to ERAD during plant development. The mechanisms of plant ERAD, including the export of substrate proteins from the ER, are not fully understood, and the molecular components involved in the ERAD of CKX are unknown. Here, we show that heavy metal-associated isoprenylated plant proteins (HIPPs) interact specifically with CKX proteins synthesized in the ER and processed by ERAD. CKX-HIPP protein complexes were detected at the ER as well as in the cytosol, suggesting that the complexes involve retrotranslocated CKX protein species. Altered CKX levels in HIPP-overexpressing and higher-order hipp mutant plants suggest that the studied HIPPs control the ERAD of CKX. Deregulation of CKX proteins caused corresponding changes in the cytokinin signaling activity and triggered typical morphological cytokinin responses. Notably, transcriptional repression of HIPP genes by cytokinin indicates a feedback regulatory mechanism of cytokinin homeostasis and signaling responses. Moreover, loss of function of HIPP genes constitutively activates the unfolded protein response and compromises the ER stress tolerance. Collectively, these results suggests that HIPPs represent novel functional components of plant ERAD.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Citocininas/metabolismo , Degradação Associada com o Retículo Endoplasmático/fisiologia , Retículo Endoplasmático/metabolismo , Oxirredutases/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Arabidopsis/enzimologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Evolução Molecular , Proteínas Nucleares/metabolismo , Oxirredutases/genética , Reguladores de Crescimento de Plantas/genética , Prenilação
2.
Exp Neurol ; 294: 32-44, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28457906

RESUMO

Cortical demyelination is a common finding in patients with chronic multiple sclerosis (MS) and contributes to disease progression and overall disability. The exact pathomechanism that leads to cortical lesions is not clear. Research is limited by the fact that standard animal models of multiple sclerosis do not commonly affect the cortex, or if they do in some variants, the cortical demyelination is rather sparse and already remyelinated within a few days. In an attempt to overcome these limitations we implanted a tissue-compatible catheter into the cortex of Dark Agouti rats. After 14days the rats were immunized with 5µg myelin oligodendrocyte glycoprotein (MOG) in incomplete Freund's Adjuvant, which did not cause any clinical signs but animals developed a stable anti-MOG antibody titer. Then the animals received an injection of proinflammatory cytokines through the catheter. This led to a demyelination of cortical and subcortical areas starting from day 1 in a cone-like pattern spreading from the catheter area towards the subarachnoid space. On day 3 cortical demyelination already expanded to the contralateral hemisphere and reached its peak between days 9-15 after cytokine injection with a widespread demyelination of cortical and subcortical areas of both hemispheres. Clinically the animals showed only discrete signs of fatigue and recovered completely after day 15. Even on day 30 we still were able to detect demyelination in subpial and intracortical areas along with areas of partial and complete remyelination. Loss of cortical myelin was accompanied with marked microglia activation. A second injection of cytokines through the catheter on day 30 led to a second demyelination phase with the same symptoms, but again no detectable motor dysfunction. Suffering of the animals appeared minor compared to standard Experimental Autoimmune Encephalomyelitis and therefore, even long-term observation and repeated demyelination phases seem ethically acceptable.


Assuntos
Córtex Cerebral/patologia , Citocinas/toxicidade , Doenças Desmielinizantes/induzido quimicamente , Doenças Desmielinizantes/patologia , Encefalomielite Autoimune Experimental/patologia , Lateralidade Funcional/fisiologia , Animais , Proteínas de Ligação ao Cálcio/metabolismo , Caspase 3/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Encefalomielite Autoimune Experimental/induzido quimicamente , Encefalomielite Autoimune Experimental/diagnóstico por imagem , Encefalomielite Autoimune Experimental/imunologia , Fibrina/metabolismo , Adjuvante de Freund/efeitos adversos , Lateralidade Funcional/efeitos dos fármacos , Imunização/efeitos adversos , Lipídeos/efeitos adversos , Masculino , Proteínas dos Microfilamentos/metabolismo , Microscopia Confocal , Atividade Motora , Proteína Proteolipídica de Mielina/metabolismo , Glicoproteína Associada a Mielina/efeitos adversos , Glicoproteína Associada a Mielina/sangue , Proteínas do Tecido Nervoso/metabolismo , Ratos , Estatísticas não Paramétricas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA