Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 14(38): 27657-27696, 2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39224646

RESUMO

Dimethylamine (DMA) derivatives represent a promising class of compounds with significant potential in the field of medicinal chemistry. DMA derivatives exhibit a diverse range of pharmacological activities, including antimicrobial, antihistaminic, anticancer, and analgesic properties. Their unique chemical structure allows for the modulation of various biological targets, making them valuable candidates for the treatment of numerous diseases. Synthetic strategies for the preparation of DMA derivatives vary depending on the desired biological activity and target molecule. Common synthetic routes involve the modification of the DMA scaffold through functional group manipulation, scaffold hopping, or combinatorial chemistry approaches. Therapeutically, DMA derivatives have shown promise in the treatment of infectious diseases, especially bacterial infections. Additionally, by focusing on particular biochemical pathways involved in tumor growth and metastasis, DMA-based drugs have shown anticancer activity. In addition to their direct pharmacological effects, DMA derivatives can serve as valuable tools in drug delivery systems, prodrug design, and molecular imaging techniques, enhancing their utility in medicinal chemistry research. Overall, DMA derivatives represent a versatile class of compounds with immense potential in medicinal chemistry. Further research and development efforts are warranted to explore their full therapeutic capabilities and optimize their clinical utility in the treatment of various diseases. This article outlines the pharmacological properties, synthetic strategies, and therapeutic applications of DMA derivatives of FDA approved drugs, highlighting their importance in drug discovery and development.

2.
ACS Omega ; 8(41): 37731-37751, 2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37867639

RESUMO

The monoamine oxidase enzyme (MAO), which is bound on the membrane of mitochondria, catalyzes the oxidative deamination of endogenous and exogenous monoamines, including monoamine neurotransmitters such as serotonin, adrenaline, and dopamine. These enzymes have been proven to play a significant role in neurodegeneration; thus, they have recently been researched as prospective therapeutic targets for neurodegenerative illness treatment and management. MAO inhibitors have already been marketed as neurodegeneration illness treatments despite their substantial side effects. Hence, researchers are concentrating on developing novel molecules with selective and reversible inhibitory properties. Piperine, which is a phytochemical component present in black pepper, has been established as a potent MAO inhibitor. Piperine encompasses a piperidine nucleus with antibacterial, anti-inflammatory, antihypertensive, anticonvulsant, antimalarial, antiviral, and anticancer properties. The current Review focuses on the structural changes and structure-activity relationships of piperidine derivatives as MAO inhibitors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA