RESUMO
microRNA-9 (miR-9) is one of the most abundant microRNAs in the mammalian brain, essential for its development and normal function. In neurons, it regulates the expression of several key molecules, ranging from ion channels to enzymes, to transcription factors broadly affecting the expression of many genes. The neuronal effects of alcohol, one of the most abused drugs in the world, seem to be at least partially dependent on regulating the expression of miR-9. We previously observed that molecular mechanisms of the development of alcohol tolerance are miR-9 dependent. Since a critical feature of alcohol action is temporal exposure to the drug, we decided to better understand the time dependence of alcohol regulation of miR-9 biogenesis and expression. We measured the effect of intoxicating concentration of alcohol (20 mM ethanol) on the expression of all major elements of miR-9 biogenesis: three pri-precursors (pri-mir-9-1, pri-mir-9-2, pri-mir-9-3), three pre-precursors (pre-mir-9-1, pre-mir-9-2, pre-mir-9-3), and two mature microRNAs: miR-9-5p and miR-9-3p, using digital PCR and RT-qPCR, and murine primary medium spiny neurons (MSN) cultures. We subjected the neurons to alcohol based on an exposure/withdrawal matrix of different exposure times (from 15 min to 24 h) followed by different withdrawal times (from 0 h to 24 h). We observed that a short exposure increased mature miR-9-5p expression, which was followed by a gradual decrease and subsequent increase of the expression, returning to pre-exposure levels within 24 h. Temporal changes of miR-9-3p expression were complementing miR-9-5p changes. Interestingly, an extended, continuous presence of the drug caused a similar pattern. These results suggest the presence of the adaptive mechanisms of miR-9 expression in the presence and absence of alcohol. Measurement of miR-9 pre- and pri-precursors showed further that the primary effect of alcohol on miR-9 is through the mir-9-2 precursor pathway with a smaller contribution of mir-9-1 and mir-9-3 precursors. Our results provide new insight into the adaptive mechanisms of neurons to alcohol exposure. It would be of interest to determine next which microRNA-based mechanisms are involved in a transition from the acute, intoxicating effects of alcohol to the chronic, addictive effects of the drug.
RESUMO
Testosterone plays a key role in preparation of a male domesticated goat (Capra hircus) to breeding season including changes in the urogenital tract of a male goat (buck). microRNAs are important regulators of cellular metabolism, differentiation and function. They are powerful intermediaries of hormonal activity in the body, including the urogenital tract. We investigated seasonal changes in expression of microRNAs in goat buck urine and their potential consequences using next generation sequencing (microRNA-Seq). We determined the location of each microRNA gene in the goat genome. Testosterone was measured by radioimmunoassay and the androgen receptor binding sites (ARBS) in the promoters of the microRNA genes were determined by MatInspector. The overall impact of regulated microRNAs on cellular physiology was assessed by mirPath. We observed high testosterone levels during the breeding season and changes in the expression of forty microRNAs. Nineteen microRNAs were upregulated, while twenty-one were downregulated. We identified several ARBS in the promoters of regulated microRNAs. Notably, the mostly inhibited microRNA, miR-1246, has a unique set of several gene copy variants associated with a cluster of androgen receptor binding sites. Concomitant changes in regulated microRNA expression could promote transcription, proliferation and differentiation of urogenital tract cells. Together, these findings indicate that in a domesticated goat (Capra hircus), there are specific changes in the microRNA expression profile in buck urine during breeding season, which could be attributable to high testosterone levels during breeding, and could help in preparation of the urogenital tract for high metabolic demands of that season.