Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38496575

RESUMO

5-hydroxymethylcytosine (5hmC), a critical epigenetic mark with a significant role in regulating tissue-specific gene expression, is essential for understanding the dynamic functions of the human genome. Using tissue-specific 5hmC sequencing data, we introduce Deep5hmC, a multimodal deep learning framework that integrates both the DNA sequence and the histone modification information to predict genome-wide 5hmC modification. The multimodal design of Deep5hmC demonstrates remarkable improvement in predicting both qualitative and quantitative 5hmC modification compared to unimodal versions of Deep5hmC and state-of-the-art machine learning methods. This improvement is demonstrated through benchmarking on a comprehensive set of 5hmC sequencing data collected at four time points during forebrain organoid development and across 17 human tissues. Notably, Deep5hmC showcases its practical utility by accurately predicting gene expression and identifying differentially hydroxymethylated regions in a case-control study of Alzheimer's disease.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA