Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cells ; 10(12)2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34944040

RESUMO

Alighting aphids probe a new host plant by intracellular test punctures for suitability. These induce immediate calcium signals that emanate from the punctured sites and might be the first step in plant recognition of aphid feeding and the subsequent elicitation of plant defence responses. Calcium is also involved in the transmission of non-persistent plant viruses that are acquired by aphids during test punctures. Therefore, we wanted to determine whether viral infection alters calcium signalling. For this, calcium signals triggered by aphids were imaged on transgenic Arabidopsis plants expressing the cytosolic FRET-based calcium reporter YC3.6-NES and infected with the non-persistent viruses cauliflower mosaic (CaMV) and turnip mosaic (TuMV), or the persistent virus, turnip yellows (TuYV). Aphids were placed on infected leaves and calcium elevations were recorded by time-lapse fluorescence microscopy. Calcium signal velocities were significantly slower in plants infected with CaMV or TuMV and signal areas were smaller in CaMV-infected plants. Transmission tests using CaMV-infected Arabidopsis mutants impaired in pathogen perception or in the generation of calcium signals revealed no differences in transmission efficiency. A transcriptomic meta-analysis indicated significant changes in expression of receptor-like kinases in the BAK1 pathway as well as of calcium channels in CaMV- and TuMV-infected plants. Taken together, infection with CaMV and TuMV, but not with TuYV, impacts aphid-induced calcium signalling. This suggests that viruses can modify plant responses to aphids from the very first vector/host contact.


Assuntos
Afídeos/fisiologia , Cálcio/metabolismo , Folhas de Planta/parasitologia , Folhas de Planta/virologia , Vírus de Plantas/fisiologia , Animais , Arabidopsis/genética , Arabidopsis/parasitologia , Arabidopsis/virologia , Proteínas de Arabidopsis/metabolismo , Sinalização do Cálcio , Caulimovirus/fisiologia , Mutação/genética , Folhas de Planta/genética
2.
Virus Res ; 297: 198356, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33667624

RESUMO

Cauliflower mosaic virus (CaMV) is transmitted by aphids using the non-circulative transmission mode: when the insects feed on infected leaves, virus particles from infected cells attach rapidly to their stylets and are transmitted to a new host when the aphids change plants. Mandatory for CaMV transmission, the viral helper protein P2 mediates as a molecular linker binding of the virus particles to the aphid stylets. P2 is available in infected plant cells in a viral inclusion that is specialized for transmission and named the transmission body (TB). When puncturing an infected leaf cell, the aphid triggers an ultra-rapid viral response, necessary for virus acquisition and called transmission activation: The TB disrupts and P2 is redistributed onto cortical microtubules, together with virus particles that are simultaneously set free from virus factories and join P2 on the microtubules to form the so-called mixed networks (MNs). The MNs are the predominant structure from which CaMV is acquired by aphids. However, the P2 domains involved in microtubule interaction are not known. To identify P2 regions involved in its functions, we generated a set of P2 mutants by alanine scanning and analyzed them in the viral context for their capacity to form a TB, to interact with microtubules and to transmit CaMV. Our results show that contrary to the previously characterized P2-P2 and P2-virion binding sites in its C-terminus, the microtubule binding site is contained in the N-terminal half of P2. Further, this region is important for TB formation since some P2 mutant proteins did not accumulate in TBs but were retained in the viral factories where P2 is translated. Taken together, the N-terminus of P2 is not only involved in vector interaction as previously reported, but also in interaction with microtubules and in formation of TBs.


Assuntos
Afídeos , Caulimovirus , Animais , Caulimovirus/genética , Caulimovirus/metabolismo , Microtúbulos , Doenças das Plantas , Proteínas Virais/genética , Proteínas Virais/metabolismo , Vírion/fisiologia
3.
EMBO J ; 40(1): e104273, 2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-33264441

RESUMO

Shade caused by the proximity of neighboring vegetation triggers a set of acclimation responses to either avoid or tolerate shade. Comparative analyses between the shade-avoider Arabidopsis thaliana and the shade-tolerant Cardamine hirsuta revealed a role for the atypical basic-helix-loop-helix LONG HYPOCOTYL IN FR 1 (HFR1) in maintaining the shade tolerance in C. hirsuta, inhibiting hypocotyl elongation in shade and constraining expression profile of shade-induced genes. We showed that C. hirsuta HFR1 protein is more stable than its A. thaliana counterpart, likely due to its lower binding affinity to CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1), contributing to enhance its biological activity. The enhanced HFR1 total activity is accompanied by an attenuated PHYTOCHROME INTERACTING FACTOR (PIF) activity in C. hirsuta. As a result, the PIF-HFR1 module is differently balanced, causing a reduced PIF activity and attenuating other PIF-mediated responses such as warm temperature-induced hypocotyl elongation (thermomorphogenesis) and dark-induced senescence. By this mechanism and that of the already-known of phytochrome A photoreceptor, plants might ensure to properly adapt and thrive in habitats with disparate light amounts.


Assuntos
Aclimatação/genética , Proteínas de Arabidopsis/genética , Arabidopsis/genética , Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica de Plantas/genética , Transcrição Gênica/genética , Sequência de Bases , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Hipocótilo/genética , Fitocromo/genética
4.
Plant Cell ; 31(11): 2649-2663, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31530733

RESUMO

Plants have evolved two major ways to deal with nearby vegetation or shade: avoidance and tolerance. Moreover, some plants respond to shade in different ways; for example, Arabidopsis (Arabidopsis thaliana) undergoes an avoidance response to shade produced by vegetation, but its close relative Cardamine hirsuta tolerates shade. How plants adopt opposite strategies to respond to the same environmental challenge is unknown. Here, using a genetic strategy, we identified the C. hirsuta slender in shade1 mutants, which produce strongly elongated hypocotyls in response to shade. These mutants lack the phytochrome A (phyA) photoreceptor. Our findings suggest that C. hirsuta has evolved a highly efficient phyA-dependent pathway that suppresses hypocotyl elongation when challenged by shade from nearby vegetation. This suppression relies, at least in part, on stronger phyA activity in C. hirsuta; this is achieved by increased ChPHYA expression and protein accumulation combined with a stronger specific intrinsic repressor activity. We suggest that modulation of photoreceptor activity is a powerful mechanism in nature to achieve physiological variation (shade tolerance versus avoidance) for species to colonize different habitats.


Assuntos
Arabidopsis/fisiologia , Cardamine/fisiologia , Luz , Fitocromo/metabolismo , Plântula/metabolismo , Arabidopsis/genética , Arabidopsis/efeitos da radiação , Proteínas de Arabidopsis , Cardamine/genética , Cardamine/efeitos da radiação , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Genes de Plantas/genética , Hipocótilo/metabolismo , Fitocromo/genética , Fitocromo/efeitos da radiação , Fitocromo A/genética , Fitocromo A/metabolismo , Fitocromo B/genética , Fitocromo B/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plântula/genética , Plântula/crescimento & desenvolvimento , Plântula/efeitos da radiação
5.
Insect Sci ; 24(6): 929-946, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28426155

RESUMO

By serving as vectors of transmission, insects play a key role in the infection cycle of many plant viruses. Viruses use sophisticated transmission strategies to overcome the spatial barrier separating plants and the impediment imposed by the plant cell wall. Interactions among insect vectors, viruses, and host plants mediate transmission by integrating all organizational levels, from molecules to populations. Best-examined on the molecular scale are two basic transmission modes wherein virus-vector interactions have been well characterized. Whereas association of virus particles with specific sites in the vector's mouthparts or in alimentary tract regions immediately posterior to them is required for noncirculative transmission, the cycle of particles through the vector body is necessary for circulative transmission. Virus transmission is also determined by interactions that are associated with changes in vector feeding behaviors and with alterations in plant host's morphology and/or metabolism that favor the attraction or deterrence of vectors. A recent concept in virus-host-vector interactions proposes that when vectors land on infected plants, vector elicitors and effectors "inform" the plants of the confluence of interacting entities and trigger signaling pathways and plant defenses. Simultaneously, the plant responses may also influence virus acquisition and inoculation by vectors. Overall, a picture is emerging where transmission depends on multilayered virus-vector-host interactions that define the route of a virus through the vector, and on the manipulation of the host and the vector. These interactions guarantee virus propagation until one or more of the interactants undergo changes through evolution or are halted by environmental interventions.


Assuntos
Insetos Vetores/virologia , Insetos/fisiologia , Doenças das Plantas/virologia , Vírus de Plantas , Plantas/virologia , Animais , Comportamento Animal , Plantas/metabolismo
6.
Development ; 143(9): 1623-31, 2016 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-26989173

RESUMO

When plants grow in close proximity basic resources such as light can become limiting. Under such conditions plants respond to anticipate and/or adapt to the light shortage, a process known as the shade avoidance syndrome (SAS). Following genetic screening using a shade-responsive luciferase reporter line (PHYB:LUC), we identified DRACULA2 (DRA2), which encodes an Arabidopsis homolog of mammalian nucleoporin 98, a component of the nuclear pore complex (NPC). DRA2, together with other nucleoporins, participates positively in the control of the hypocotyl elongation response to plant proximity, a role that can be considered dependent on the nucleocytoplasmic transport of macromolecules (i.e. is transport dependent). In addition, our results reveal a specific role for DRA2 in controlling shade-induced gene expression. We suggest that this novel regulatory role of DRA2 is transport independent and that it might rely on its dynamic localization within and outside of the NPC. These results provide mechanistic insights in to how SAS responses are rapidly established by light conditions. They also indicate that nucleoporins have an active role in plant signaling.


Assuntos
Transporte Ativo do Núcleo Celular/fisiologia , Proteínas de Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Hipocótilo/crescimento & desenvolvimento , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Transporte Ativo do Núcleo Celular/genética , Arabidopsis/genética , Hipocótilo/genética , Luz , Poro Nuclear/genética , Poro Nuclear/metabolismo , Plantas Geneticamente Modificadas/genética
7.
Curr Opin Virol ; 15: 63-8, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26318641

RESUMO

Many viruses are transmitted by arthropod vectors. An important mode of transmission is the noncirculative or mechanical transmission where viruses attach to the vector mouthparts for transport to a new host. It has long been assumed that noncirculative transmission is an unsophisticated mode of viral spread, and in the simplest case mere contamination of the vector mouthparts. However, emerging evidence strongly suggests that noncirculative transmission, like other transmission strategies, results from specific interactions between pathogens, hosts, and vectors. Recently, new insights into this concept have been obtained, by demonstrating that a plant virus responds instantly to the presence of its aphid vector on the host by forming transmission morphs. This novel concept, named Transmission Activation (TA), where viruses respond directly or via the host to the outside world, opens new research horizons.


Assuntos
Interações Hospedeiro-Patógeno , Insetos Vetores/virologia , Vírus de Plantas/fisiologia , Viroses/transmissão , Animais , Afídeos/virologia , Vetores Artrópodes/fisiologia , Vetores Artrópodes/virologia , Proteínas do Capsídeo/fisiologia , Humanos , Doenças das Plantas/virologia , Plantas/metabolismo , Plantas/virologia , Vírion/fisiologia , Viroses/virologia
8.
Plant J ; 78(1): 1-15, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24460550

RESUMO

A major goal in biology is to identify the genetic basis for phenotypic diversity. This goal underpins research in areas as diverse as evolutionary biology, plant breeding and human genetics. A limitation for this research is no longer the availability of sequence information but the development of functional genetic tools to understand the link between changes in sequence and phenotype. Here we describe Cardamine hirsuta, a close relative of the reference plant Arabidopsis thaliana, as an experimental system in which genetic and transgenic approaches can be deployed effectively for comparative studies. We present high-resolution genetic and cytogenetic maps for C. hirsuta and show that the genome structure of C. hirsuta closely resembles the eight chromosomes of the ancestral crucifer karyotype and provides a good reference point for comparative genome studies across the Brassicaceae. We compared morphological and physiological traits between C. hirsuta and A. thaliana and analysed natural variation in stamen number in which lateral stamen loss is a species characteristic of C. hirsuta. We constructed a set of recombinant inbred lines and detected eight quantitative trait loci that can explain stamen number variation in this population. We found clear phylogeographic structure to the genetic variation in C. hirsuta, thus providing a context within which to address questions about evolutionary changes that link genotype with phenotype and the environment.


Assuntos
Cardamine/genética , Cromossomos de Plantas/genética , Variação Genética , Genoma de Planta/genética , Arabidopsis/citologia , Arabidopsis/genética , Arabidopsis/fisiologia , Brassicaceae/citologia , Brassicaceae/genética , Brassicaceae/fisiologia , Cardamine/citologia , Cardamine/fisiologia , Meio Ambiente , Evolução Molecular , Genótipo , Cariótipo , Fenótipo , Filogeografia , Componentes Aéreos da Planta/citologia , Componentes Aéreos da Planta/genética , Componentes Aéreos da Planta/fisiologia , Raízes de Plantas/citologia , Raízes de Plantas/genética , Raízes de Plantas/fisiologia , Locos de Características Quantitativas , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA