Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Plant Cell ; 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38608155

RESUMO

BIG/DARK OVEREXPRESSION OF CAB1/TRANSPORT INHIBITOR RESPONSE3 is a 0.5-MDa protein associated with multiple functions in Arabidopsis (Arabidopsis thaliana) signalling and development. However, the biochemical functions of BIG are unknown. We investigated a role for BIG in the Arg/N-degron pathways, in which substrate protein fate is influenced by the N-terminal (Nt) residue. We crossed a big loss-of-function allele to two N-degron pathway E3 ligase mutants, proteolysis6 (prt6) and prt1, and examined the stability of protein substrates. Stability of model substrates was enhanced in prt6-1 big-2 and prt1-1 big-2 relative to the respective single mutants and the abundance of the PRT6 physiological substrates, HYPOXIA-RESPONSIVE ERF2 (HRE2) and VERNALIZATION2 (VRN2) was similarly increased in prt6 big double mutants. Hypoxia marker expression was enhanced in prt6 big double mutants; this constitutive response required arginyltransferase activity and RAP-type ERFVII transcription factors. Transcriptomic analysis of roots not only demonstrated increased expression of multiple hypoxia-responsive genes in the double mutant relative to prt6, but also revealed other roles for PRT6 and BIG, including regulation of suberin deposition through both ERFVII-dependent and independent mechanisms, respectively. Our results show that BIG acts together with PRT6 to regulate the hypoxia response and broader processes in Arabidopsis.

2.
Methods Mol Biol ; 2581: 201-220, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36413319

RESUMO

Targeted protein degradation plays a wide range of important roles in plant growth and development, but analyzing protein turnover in vivo is technically challenging. Until recently, there has been no straightforward methodology for quantifying protein dynamics at subcellular resolution during cellular transitions in plants. A tandem fluorescent protein timer (tFT) is a fusion of two different fluorescent proteins with distinct fluorophore maturation kinetics, which allows estimation of relative protein age from the ratio of fluorescence intensities of the two fluorescent proteins. Here, we describe approaches to use this technology to report relative protein lifetime in both transient and stable plant transformation systems. tFTs enable in vivo, real-time protein lifetime assessment within subcellular compartments and across tissues, permitting the analysis of protein degradation dynamics in response to stresses or developmental cues and in different genetic backgrounds.


Assuntos
Proteínas , Receptores de Antígenos Quiméricos , Proteínas/metabolismo , Plantas/metabolismo , Proteólise , Cinética , Corantes Fluorescentes , Receptores de Antígenos Quiméricos/metabolismo
3.
Essays Biochem ; 66(2): 75-85, 2022 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-35929615

RESUMO

The Green Revolution of the 1960s accomplished dramatic increases in crop yields through genetic improvement, chemical fertilisers, irrigation, and mechanisation. However, the current trajectory of population growth, against a backdrop of climate change and geopolitical unrest, predicts that agricultural production will be insufficient to ensure global food security in the next three decades. Improvements to crops that go beyond incremental gains are urgently needed. Plant biology has also undergone a revolution in recent years, through the development and application of powerful technologies including genome sequencing, a pantheon of 'omics techniques, precise genome editing, and step changes in structural biology and microscopy. Proteostasis - the collective processes that control the protein complement of the cell, comprising synthesis, modification, localisation, and degradation - is a field that has benefitted from these advances. This special issue presents a selection of the latest research in this vibrant field, with a particular focus on protein degradation. In the current article, we highlight the diverse and widespread contributions of plant proteostasis to agronomic traits, suggest opportunities and strategies to manipulate different elements of proteostatic mechanisms for crop improvement, and discuss the challenges involved in bringing these ideas into practice.


Assuntos
Genoma de Planta , Proteostase , Agricultura , Produtos Agrícolas/genética , Edição de Genes/métodos
4.
Plant Physiol ; 190(2): 1365-1383, 2022 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-35640551

RESUMO

Flooded plants experience impaired gas diffusion underwater, leading to oxygen deprivation (hypoxia). The volatile plant hormone ethylene is rapidly trapped in submerged plant cells and is instrumental for enhanced hypoxia acclimation. However, the precise mechanisms underpinning ethylene-enhanced hypoxia survival remain unclear. We studied the effect of ethylene pretreatment on hypoxia survival of Arabidopsis (Arabidopsis thaliana) primary root tips. Both hypoxia itself and re-oxygenation following hypoxia are highly damaging to root tip cells, and ethylene pretreatments reduced this damage. Ethylene pretreatment alone altered the abundance of transcripts and proteins involved in hypoxia responses, root growth, translation, and reactive oxygen species (ROS) homeostasis. Through imaging and manipulating ROS abundance in planta, we demonstrated that ethylene limited excessive ROS formation during hypoxia and subsequent re-oxygenation and improved oxidative stress survival in a PHYTOGLOBIN1-dependent manner. In addition, we showed that root growth cessation via ethylene and auxin occurred rapidly and that this quiescence behavior contributed to enhanced hypoxia tolerance. Collectively, our results show that the early flooding signal ethylene modulates a variety of processes that all contribute to hypoxia survival.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Etilenos/metabolismo , Etilenos/farmacologia , Regulação da Expressão Gênica de Plantas , Hipóxia/metabolismo , Ácidos Indolacéticos/metabolismo , Ácidos Indolacéticos/farmacologia , Oxigênio/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Raízes de Plantas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais
5.
Nat Commun ; 10(1): 4020, 2019 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-31488841

RESUMO

Timely perception of adverse environmental changes is critical for survival. Dynamic changes in gases are important cues for plants to sense environmental perturbations, such as submergence. In Arabidopsis thaliana, changes in oxygen and nitric oxide (NO) control the stability of ERFVII transcription factors. ERFVII proteolysis is regulated by the N-degron pathway and mediates adaptation to flooding-induced hypoxia. However, how plants detect and transduce early submergence signals remains elusive. Here we show that plants can rapidly detect submergence through passive ethylene entrapment and use this signal to pre-adapt to impending hypoxia. Ethylene can enhance ERFVII stability prior to hypoxia by increasing the NO-scavenger PHYTOGLOBIN1. This ethylene-mediated NO depletion and consequent ERFVII accumulation pre-adapts plants to survive subsequent hypoxia. Our results reveal the biological link between three gaseous signals for the regulation of flooding survival and identifies key regulatory targets for early stress perception that could be pivotal for developing flood-tolerant crops.


Assuntos
Arabidopsis/metabolismo , Etilenos/metabolismo , Etilenos/farmacologia , Hipóxia , Óxido Nítrico/metabolismo , Estresse Fisiológico/fisiologia , Aclimatação/genética , Aclimatação/fisiologia , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Inundações , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Hemoglobinas/metabolismo , Oxigênio/metabolismo , Proteólise , Estresse Fisiológico/efeitos dos fármacos , Estresse Fisiológico/genética , Fatores de Transcrição/metabolismo
6.
Sci Rep ; 9(1): 10502, 2019 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-31324846

RESUMO

The peroxisomal ABC transporter, Comatose (CTS), a full length transporter from Arabidopsis has intrinsic acyl-CoA thioesterase (ACOT) activity, important for physiological function. We used molecular modelling, mutagenesis and biochemical analysis to identify amino acid residues important for ACOT activity. D863, Q864 and T867 lie within transmembrane helix 9. These residues are orientated such that they might plausibly contribute to a catalytic triad similar to type II Hotdog fold thioesterases. When expressed in Saccharomyces cerevisiae, mutation of these residues to alanine resulted in defective of ß-oxidation. All CTS mutants were expressed and targeted to peroxisomes and retained substrate-stimulated ATPase activity. When expressed in insect cell membranes, Q864A and S810N had similar ATPase activity to wild type but greatly reduced ACOT activity, whereas the Walker A mutant K487A had greatly reduced ATPase and no ATP-dependent ACOT activity. In wild type CTS, ATPase but not ACOT was stimulated by non-cleavable C14 ether-CoA. ACOT activity was stimulated by ATP but not by non-hydrolysable AMPPNP. Thus, ACOT activity depends on functional ATPase activity but not vice versa, and these two activities can be separated by mutagenesis. Whether D863, Q864 and T867 have a catalytic role or play a more indirect role in NBD-TMD communication is discussed.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Adenosina Trifosfatases/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Ácido Graxo Sintases/metabolismo , Tioléster Hidrolases/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Adenosina Trifosfatases/genética , Trifosfato de Adenosina/metabolismo , Animais , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Domínio Catalítico , Linhagem Celular , Ácido Graxo Sintases/genética , Interações Hidrofóbicas e Hidrofílicas , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Modelos Moleculares , Mutagênese Sítio-Dirigida , Mutação de Sentido Incorreto , Ácido Oleico/metabolismo , Oxirredução , Peroxissomos/enzimologia , Ligação Proteica , Conformação Proteica , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae , Spodoptera , Relação Estrutura-Atividade , Tioléster Hidrolases/genética
7.
Plant Physiol ; 180(2): 718-731, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30872425

RESUMO

Targeted protein degradation is an important and pervasive regulatory mechanism in plants, required for perception and response to the environment as well as developmental signaling. Despite the significance of this process, relatively few studies have assessed plant protein turnover in a quantitative fashion. Tandem fluorescent protein timers (tFTs) offer a powerful approach for the assessment of in vivo protein turnover in distinct subcellular compartments of single or multiple cells. A tFT is a fusion of two different fluorescent proteins with distinct fluorophore maturation kinetics, which enable protein age to be estimated from the ratio of fluorescence intensities of the two fluorescent proteins. Here, we used short-lived auxin signaling proteins and model N-end rule (N-recognin) pathway reporters to demonstrate the utility of tFTs for studying protein turnover in living plant cells of Arabidopsis (Arabidopsis thaliana) and Nicotiana benthamiana We present transient expression of tFTs as an efficient screen for relative protein lifetime, useful for testing the effects of mutations and different genetic backgrounds on protein stability. This work demonstrates the potential for using stably expressed tFTs to study native protein dynamics with high temporal resolution in response to exogenous or endogenous stimuli.


Assuntos
Arabidopsis/metabolismo , Proteínas Luminescentes/metabolismo , Nicotiana/metabolismo , Proteínas de Plantas/metabolismo , Genes Reporter , Meia-Vida , Ácidos Indolacéticos/metabolismo , Epiderme Vegetal/metabolismo , Transdução de Sinais , Fatores de Tempo
8.
Plant Direct ; 3(12): e00194, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31891113

RESUMO

N-degron pathways of ubiquitin-mediated proteolysis (formerly known as the N-end rule pathway) control the stability of substrate proteins dependent on the amino-terminal (Nt) residue. Unlike yeast or mammalian N-recognin E3 ligases, which each recognize several different classes of Nt residues, in Arabidopsis thaliana, N-recognin functions of different N-degron pathways are carried out independently by PROTEOLYSIS (PRT)1, PRT6, and other unknown proteins. PRT1 recognizes type 2 aromatic Nt-destabilizing residues and PRT6 recognizes type 1 basic residues. These two N-recognin functions diverged as separate proteins early in the evolution of plants, before the conquest of the land. We demonstrate that loss of PRT1 function promotes the plant immune system, as mutant prt1-1 plants showed greater apoplastic resistance than WT to infection by the bacterial hemi-biotroph Pseudomonas syringae pv tomato (Pst) DC3000. Quantitative proteomics revealed increased accumulation of proteins associated with specific components of plant defense in the prt1-1 mutant, concomitant with increased accumulation of salicylic acid. The effects of the prt1 mutation were additional to known effects of prt6 in influencing the immune system, in particular, an observed over-accumulation of pipecolic acid (Pip) in the double-mutant prt1-1 prt6-1. These results demonstrate a potential role for PRT1 in controlling aspects of the plant immune system and suggest that PRT1 limits the onset of the defense response via degradation of substrates with type 2 Nt-destabilizing residues.

9.
Sci Rep ; 8(1): 15192, 2018 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-30315202

RESUMO

The Arg/N-end rule pathway of ubiquitin-mediated proteolysis has multiple functions throughout plant development, notably in the transition from dormant seed to photoautotrophic seedling. PROTEOLYSIS6 (PRT6), an N-recognin E3 ligase of the Arg/N-end rule regulates the degradation of transcription factor substrates belonging to Group VII of the Ethylene Response Factor superfamily (ERFVIIs). It is not known whether ERFVIIs are associated with all known functions of the Arg/N-end rule, and the downstream pathways influenced by ERFVIIs are not fully defined. Here, we examined the relationship between PRT6 function, ERFVIIs and ABA signalling in Arabidopsis seedling establishment. Physiological analysis of seedlings revealed that N-end rule-regulated stabilisation of three of the five ERFVIIs, RAP2.12, RAP2.2 and RAP2.3, controls sugar sensitivity of seedling establishment and oil body breakdown following germination. ABA signalling components ABA INSENSITIVE (ABI)4 as well as ABI3 and ABI5 were found to enhance ABA sensitivity of germination and sugar sensitivity of establishment in a background containing stabilised ERFVIIs. However, N-end rule regulation of oil bodies was not dependent on canonical ABA signalling. We propose that the N-end rule serves to control multiple aspects of the seed to seedling transition by regulation of ERFVII activity, involving both ABA-dependent and independent signalling pathways.


Assuntos
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Plântula/genética , Plântula/metabolismo , Transdução de Sinais , Arabidopsis/citologia , Expressão Ectópica do Gene , Desenvolvimento Vegetal/genética , Plântula/citologia
10.
Plant Physiol ; 178(1): 358-371, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29997180

RESUMO

Circadian clocks drive rhythms with a period near 24 h, but the molecular basis of the regulation of the period of the circadian clockis poorly understood. We previously demonstrated that metabolites affect the free-running period of the circadian oscillator of Arabidopsis (Arabidopsis thaliana), with endogenous sugars acting as an accelerator and exogenous nicotinamide acting as a brake. Changes in circadian oscillator period are thought to adjust the timing of biological activities through the process of entrainment, in which the circadian oscillator becomes synchronized to rhythmic signals such as light and dark cycles as well as changes in internal metabolism. To identify the molecular components associated with the dynamic adjustment of circadian period, we performed a forward genetic screen. We identified Arabidopsis mutants that were either period insensitive to nicotinamide (sin) or period oversensitive to nicotinamide (son). We mapped son1 to BIG, a gene of unknown molecular function that was shown previously to play a role in light signaling. We found that son1 has an early entrained phase, suggesting that the dynamic alteration of circadian period contributes to the correct timing of biological events. Our data provide insight into how the dynamic period adjustment of circadian oscillators contributes to establishing a correct phase relationship with the environment and show that BIG is involved in this process.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Proteínas de Ligação a Calmodulina/genética , Relógios Circadianos/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Cálcio/metabolismo , Proteínas de Ligação a Calmodulina/metabolismo , Relógios Circadianos/efeitos da radiação , Ritmo Circadiano/genética , Ritmo Circadiano/efeitos da radiação , Luz , Plantas Geneticamente Modificadas
11.
New Phytol ; 218(3): 1106-1126, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29168982

RESUMO

The N-end rule pathway of targeted protein degradation is an important regulator of diverse processes in plants but detailed knowledge regarding its influence on the proteome is lacking. To investigate the impact of the Arg/N-end rule pathway on the proteome of etiolated seedlings, we used terminal amine isotopic labelling of substrates with tandem mass tags (TMT-TAILS) for relative quantification of N-terminal peptides in prt6, an Arabidopsis thaliana N-end rule mutant lacking the E3 ligase PROTEOLYSIS6 (PRT6). TMT-TAILS identified over 4000 unique N-terminal peptides representing c. 2000 protein groups. Forty-five protein groups exhibited significantly increased N-terminal peptide abundance in prt6 seedlings, including cruciferins, major seed storage proteins, which were regulated by Group VII Ethylene Response Factor (ERFVII) transcription factors, known substrates of PRT6. Mobilisation of endosperm α-cruciferin was delayed in prt6 seedlings. N-termini of several proteases were downregulated in prt6, including RD21A. RD21A transcript, protein and activity levels were downregulated in a largely ERFVII-dependent manner. By contrast, cathepsin B3 protein and activity were upregulated by ERFVIIs independent of transcript. We propose that the PRT6 branch of the pathway regulates protease activities in a complex manner and optimises storage reserve mobilisation in the transition from seed to seedling via control of ERFVII action.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Arginina/metabolismo , Endopeptidases/metabolismo , Proteólise , Proteômica/métodos , Proteínas de Armazenamento de Sementes/metabolismo , Sequência de Aminoácidos , Proteínas de Arabidopsis/química , Endosperma/metabolismo , Regulação da Expressão Gênica de Plantas , Mutação/genética , Peptídeos/química , Peptídeos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Plântula/metabolismo
12.
Biochem Soc Trans ; 44(3): 774-82, 2016 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-27284041

RESUMO

Import of ß-oxidation substrates into peroxisomes is mediated by ATP binding cassette (ABC) transporters belonging to subfamily D. In order to enter the ß-oxidation pathway, fatty acids are activated by conversion to fatty acyl-CoA esters, a reaction which is catalysed by acyl-CoA synthetases (ACSs). Here, we present evidence for an unusual transport mechanism, in which fatty acyl-CoA substrates are accepted by ABC subclass D protein (ABCD) transporters, cleaved by the transporters during transit across the lipid bilayer to release CoA, and ultimately re-esterified in the peroxisome lumen by ACSs which interact with the transporter. We propose that this solves the biophysical problem of moving an amphipathic molecule across the peroxisomal membrane, since the intrinsic thioesterase activity of the transporter permits separate membrane translocation pathways for the hydrophobic fatty acid moiety and the polar CoA moiety. The cleavage/re-esterification mechanism also has the potential to control entry of disparate substrates into the ß-oxidation pathway when coupled with distinct peroxisomal ACSs. A different solution to the movement of amphipathic molecules across a lipid bilayer is deployed by the bacterial lipid-linked oligosaccharide (LLO) flippase, PglK, in which the hydrophilic head group and the hydrophobic polyprenyl tail of the substrate are proposed to have distinct translocation pathways but are not chemically separated during transport. We discuss a speculative alternating access model for ABCD proteins based on the mammalian ABC transporter associated with antigen processing (TAP) and compare it to the novel mechanism suggested by the recent PglK crystal structures and biochemical data.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Acil Coenzima A/metabolismo , Coenzima A Ligases/metabolismo , Bicamadas Lipídicas/metabolismo , Peroxissomos/metabolismo , Animais , Bactérias/metabolismo , Transporte Biológico , Eucariotos/metabolismo , Humanos , Hidrólise , Interações Hidrofóbicas e Hidrofílicas , Lipopolissacarídeos/metabolismo
13.
Biochem Soc Trans ; 43(5): 959-65, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26517910

RESUMO

Peroxisomes are arguably the most biochemically versatile of all eukaryotic organelles. Their metabolic functions vary between different organisms, between different tissue types of the same organism and even between different developmental stages or in response to changed environmental conditions. New functions for peroxisomes are still being discovered and their importance is underscored by the severe phenotypes that can arise as a result of peroxisome dysfunction. The ß-oxidation pathway is central to peroxisomal metabolism, but the substrates processed are very diverse, reflecting the diversity of peroxisomes across species. Substrates for ß-oxidation enter peroxisomes via ATP-binding cassette (ABC) transporters of subfamily D; (ABCD) and are activated by specific acyl CoA synthetases for further metabolism. Humans have three peroxisomal ABCD family members, which are half transporters that homodimerize and have distinct but partially overlapping substrate specificity; Saccharomyces cerevisiae has two half transporters that heterodimerize and plants have a single peroxisomal ABC transporter that is a fused heterodimer and which appears to be the single entry point into peroxisomes for a very wide variety of ß-oxidation substrates. Our studies suggest that the Arabidopsis peroxisomal ABC transporter AtABCD1 accepts acyl CoA substrates, cleaves them before or during transport followed by reactivation by peroxisomal synthetases. We propose that this is a general mechanism to provide specificity to this class of transporters and by which amphipathic compounds are moved across peroxisome membranes.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Coenzima A Ligases/metabolismo , Ácidos Graxos/metabolismo , Peroxissomos/metabolismo , Transportadores de Cassetes de Ligação de ATP/química , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Humanos , Modelos Moleculares , Oxirredução , Conformação Proteica , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo
14.
Biochem Soc Trans ; 43(5): 1033-40, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26517919

RESUMO

In most organisms, ABC transporters constitute one of the largest families of membrane proteins. In humans, their functions are diverse and underpin numerous key physiological processes, as well as being causative factors in a number of clinically relevant pathologies. Advances in our understanding of these diseases have come about through combinations of genetic and protein biochemical investigations of these transporters and the power of in vitro and in vivo investigations is helping to develop genotype-phenotype understanding. However, the importance of ABC transporter research goes far beyond human biology; microbial ABC transporters are of great interest in terms of understanding virulence and drug resistance and industrial biotechnology researchers are exploring the potential of prokaryotic ABC exporters to increase the capacity of synthetic biology systems. Plant ABC transporters play important roles in transport of hormones, xenobiotics, metals and secondary metabolites, pathogen responses and numerous aspects of development, all of which are important in the global food security area. For 3 days in Chester, this Biochemical Society Focused Meeting brought together researchers with diverse experimental approaches and with different fundamental questions, all of which are linked by the commonality of ABC transporters.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Pesquisa Biomédica/métodos , Resistência a Múltiplos Medicamentos , Transportadores de Cassetes de Ligação de ATP/genética , Animais , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Transporte Biológico , Pesquisa Biomédica/tendências , Humanos , Família Multigênica , Especificidade da Espécie
15.
Proteomics ; 15(14): 2447-57, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25728785

RESUMO

According to the Arg/N-end rule pathway, proteins with basic N-termini are targeted for degradation by the Arabidopsis thaliana E3 ligase, PROTEOLYSIS6 (PRT6). Proteins can also become PRT6 substrates following post-translational arginylation by arginyltransferases ATE1 and 2. Here, we undertook a quantitative proteomics study of Arg/N-end rule mutants, ate1/2 and prt6, to investigate the impact of this pathway on the root proteome. Tandem mass tag labelling identified a small number of proteins with increased abundance in the mutants, some of which represent downstream targets of transcription factors known to be N-end rule substrates. Isolation of N-terminal peptides using terminal amine isotope labelling of samples (TAILS) combined with triple dimethyl labelling identified 1465 unique N-termini. Stabilising residues were over-represented among the free neo-N-termini, but destabilising residues were not markedly enriched in N-end rule mutants. The majority of free neo-N-termini were revealed following cleavage of organellar targeting signals, thus compartmentation may account in part for the presence of destabilising residues in the wild-type N-terminome. Our data suggest that PRT6 does not have a marked impact on the global proteome of Arabidopsis roots and is likely involved in the controlled degradation of relatively few regulatory proteins. All MS data have been deposited in the ProteomeXchange with identifier PXD001719 (http://proteomecentral.proteomexchange.org/dataset/PXD001719).


Assuntos
Aminoaciltransferases/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Raízes de Plantas/metabolismo , Transdução de Sinais , Ubiquitina-Proteína Ligases/metabolismo , Acetilação , Aminoaciltransferases/genética , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Mutação , Raízes de Plantas/genética , Proteólise , Proteômica , Ubiquitina-Proteína Ligases/genética
16.
Biochem Soc Trans ; 42(4): 1025-32, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25109997

RESUMO

In 1945, Fritz Lipmann discovered a heat-stable cofactor required for many enzyme-catalysed acetylation reactions. He later determined the structure for this acetylation coenzyme, or coenzyme A (CoA), an achievement for which he was awarded the Nobel Prize in 1953. CoA is now firmly embedded in the literature, and in students' minds, as an acyl carrier in metabolic reactions. However, recent research has revealed diverse and important roles for CoA above and beyond intermediary metabolism. As well as participating in direct post-translational regulation of metabolic pathways by protein acetylation, CoA modulates the epigenome via acetylation of histones. The organization of CoA biosynthetic enzymes into multiprotein complexes with different partners also points to close linkages between the CoA pool and multiple signalling pathways. Dysregulation of CoA biosynthesis or CoA thioester homoeostasis is associated with various human pathologies and, although the biochemistry of CoA biosynthesis is highly conserved, there are significant sequence and structural differences between microbial and human biosynthetic enzymes. Therefore the CoA biosynthetic pathway is an attractive target for drug discovery. The purpose of the Coenzyme A and Its Derivatives in Cellular Metabolism and Disease Biochemical Society Focused Meeting was to bring together researchers from around the world to discuss the most recent advances on the influence of CoA, its biosynthetic enzymes and its thioesters in cellular metabolism and diseases and to discuss challenges and opportunities for the future.


Assuntos
Coenzima A/metabolismo , Acetilação , Animais , Humanos , Doenças Neurodegenerativas/metabolismo , Ácido Pantotênico/metabolismo
17.
J Exp Bot ; 65(17): 4833-47, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24913629

RESUMO

In oilseed plants, peroxisomal ß-oxidation functions not only in lipid catabolism but also in jasmonate biosynthesis and metabolism of pro-auxins. Subfamily D ATP-binding cassette (ABC) transporters mediate import of ß-oxidation substrates into the peroxisome, and the Arabidopsis ABCD protein, COMATOSE (CTS), is essential for this function. Here, the roles of peroxisomal ABCD transporters were investigated in barley, where the main storage compound is starch. Barley has two CTS homologues, designated HvABCD1 and HvABCD2, which are widely expressed and present in embryo and aleurone tissues during germination. Suppression of both genes in barley RNA interference (RNAi) lines indicated roles in metabolism of 2,4-dichlorophenoxybutyrate (2,4-DB) and indole butyric acid (IBA), jasmonate biosynthesis, and determination of grain size. Transformation of the Arabidopsis cts-1 null mutant with HvABCD1 and HvABCD2 confirmed these findings. HvABCD2 partially or completely complemented all tested phenotypes of cts-1. In contrast, HvABCD1 failed to complement the germination and establishment phenotypes of cts-1 but increased the sensitivity of hypocotyls to 100 µM IBA and partially complemented the seed size phenotype. HvABCD1 also partially complemented the yeast pxa1/pxa2Δ mutant for fatty acid ß-oxidation. It is concluded that the core biochemical functions of peroxisomal ABC transporters are largely conserved between oilseeds and cereals but that their physiological roles and importance may differ.


Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , Proteínas de Arabidopsis/genética , Hordeum/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Hordeum/metabolismo , Organismos Geneticamente Modificados/genética , Organismos Geneticamente Modificados/metabolismo , Oxirredução , Peroxissomos/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Interferência de RNA , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
18.
Mol Cell ; 53(3): 369-79, 2014 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-24462115

RESUMO

Nitric oxide (NO) is an important signaling compound in prokaryotes and eukaryotes. In plants, NO regulates critical developmental transitions and stress responses. Here, we identify a mechanism for NO sensing that coordinates responses throughout development based on targeted degradation of plant-specific transcriptional regulators, the group VII ethylene response factors (ERFs). We show that the N-end rule pathway of targeted proteolysis targets these proteins for destruction in the presence of NO, and we establish them as critical regulators of diverse NO-regulated processes, including seed germination, stomatal closure, and hypocotyl elongation. Furthermore, we define the molecular mechanism for NO control of germination and crosstalk with abscisic acid (ABA) signaling through ERF-regulated expression of ABSCISIC ACID INSENSITIVE5 (ABI5). Our work demonstrates how NO sensing is integrated across multiple physiological processes by direct modulation of transcription factor stability and identifies group VII ERFs as central hubs for the perception of gaseous signals in plants.


Assuntos
Proteínas de Arabidopsis/metabolismo , Óxido Nítrico/metabolismo , Fatores de Transcrição/metabolismo , Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/efeitos dos fármacos , Proteínas de Arabidopsis/genética , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Germinação/efeitos dos fármacos , Germinação/fisiologia , Óxido Nítrico/farmacologia , Oxigênio/farmacologia , Estômatos de Plantas/efeitos dos fármacos , Proteólise , Transdução de Sinais , Fatores de Transcrição/efeitos dos fármacos
19.
Subcell Biochem ; 69: 169-94, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23821149

RESUMO

Tremendous progress in plant peroxisome research has revealed unexpected metabolic functions for plant peroxisomes. Besides photorespiration and lipid metabolism, plant peroxisomes play a key role in many metabolic and signaling pathways, such as biosynthesis of phytohormones, pathogen defense, senescence-associated processes, biosynthesis of biotin and isoprenoids, and metabolism of urate, polyamines, sulfite, phylloquinone, volatile benzenoids, and branched chain amino acids. These peroxisomal pathways require an interplay with other cellular compartments, including plastids, mitochondria, and the cytosol. Consequently, a considerable number of substrates, intermediates, end products, and cofactors have to shuttle across peroxisome membranes. However, our knowledge of their membrane passage is still quite limited. This review describes the solute transport processes required to connect peroxisomes with other cell compartments. Furthermore, we discuss the known and yet-to-be-defined transport proteins that mediate these metabolic exchanges across the peroxisomal bilayer.


Assuntos
Membranas Intracelulares/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Peroxissomos/metabolismo , Proteínas de Plantas/metabolismo , Plantas/metabolismo , Transporte Biológico
20.
Biochem J ; 451(3): 345-52, 2013 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-23581405

RESUMO

PMPs (peroxisome membrane proteins) play essential roles in organelle biogenesis and in co-ordinating peroxisomal metabolism with pathways in other subcellular compartments through transport of metabolites and the operation of redox shuttles. Although the import of soluble proteins into the peroxisome matrix has been well studied, much less is known about the trafficking of PMPs. Pex3 and Pex19 (and Pex16 in mammals) were identified over a decade ago as critical components of PMP import; however, it has proved surprisingly difficult to produce a unified model for their function in PMP import and peroxisome biogenesis. It has become apparent that each of these peroxins has multiple functions and in the present review we focus on both the classical and the more recently identified roles of Pex19 and Pex3 as informed by structural, biochemical and live cell imaging studies. We consider the different models proposed for peroxisome biogenesis and the role of PMP import within them, and propose that the differences may be more perceived than real and may reflect the highly dynamic nature of peroxisomes.


Assuntos
Regulação da Expressão Gênica , Lipoproteínas/metabolismo , Proteínas de Membrana/metabolismo , Peroxissomos/fisiologia , Animais , Retículo Endoplasmático/fisiologia , Humanos , Membranas Intracelulares/fisiologia , Lipoproteínas/genética , Proteínas de Membrana/genética , Oxirredução , Peroxinas , Plantas , Ligação Proteica , Estrutura Terciária de Proteína , Transporte Proteico , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA