Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Ecol Evol ; 14(6): e11510, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38882530

RESUMO

During past glacial periods, the land cover of Northern Eurasia and North America repeatedly shifted between open steppe tundra and boreal/temperate forest. Tracking these changes and estimating the coverage of open versus forested vegetation in past glacial and interglacial landscapes is notoriously difficult because the characteristic dwarf birches of the tundra and the tree birches of the boreal and temperate forests produce similar pollen grains that are difficult to distinguish in the pollen record. One objective approach to separating dwarf birch pollen from tree birch pollen is to use grain size statistics. However, the required grain size measurements are time-consuming and, therefore, rarely produced. Here, we present an approach to automatic size measurement based on image recognition with convolutional neural networks and machine learning. It includes three main steps. First, the TOFSI algorithm is applied to detect and classify pollen, including birch pollen, in lake sediment samples. Second, a Resnet-18 neural network is applied to select the birch pollen suitable for measurement. Third, semantic segmentation is applied to detect the outline and the area and mean width of each detected birch pollen grain. Test applications with two pollen records from Northern Germany, one covering the Lateglacial-Early Holocene transition and the other covering the Mid to Late Pleistocene transition, show that the new technical approach is well suited to measure the area and mean width of birch pollen rapidly (>1000 per hour) and with high accuracy. Our new network-based tool facilitates more regular size measurements of birch pollen. Expanded analysis of modern birch pollen will help to better understand size variations in birch pollen between birch species and in response to environmental factors as well as differential sample preparation. Analysis of fossil samples will allow better quantification of dwarf birch versus tree birch in past environments.

2.
Commun Biol ; 6(1): 72, 2023 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-36653523

RESUMO

Sedimentary DNA-based studies revealed the effects of human activity on lake cyanobacteria communities over the last centuries, yet we continue to lack information over longer timescales. Here, we apply high-resolution molecular analyses on sedimentary ancient DNA to reconstruct the history of cyanobacteria throughout the Holocene in a lake in north-eastern Germany. We find a substantial increase in cyanobacteria abundance coinciding with deforestation during the early Bronze Age around 4000 years ago, suggesting increased nutrient supply to the lake by local communities settling on the lakeshore. The next substantial human-driven increase in cyanobacteria abundance occurred only about a century ago due to intensified agricultural fertilisation which caused the dominance of potentially toxic taxa (e.g., Aphanizomenon). Our study provides evidence that humans began to locally impact lake ecology much earlier than previously assumed. Consequently, managing aquatic systems today requires awareness of the legacy of human influence dating back potentially several millennia.


Assuntos
Cianobactérias , DNA Antigo , Humanos , Lagos/microbiologia , Efeitos Antropogênicos , Cianobactérias/genética , Ecologia
3.
Sci Rep ; 11(1): 20876, 2021 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-34686702

RESUMO

Connecting pathways are essential for cultural and economic exchange. Commonly, historians investigate the role of routes for cultural development, whereas the environmental impacts of historical routes attract less attention. Here, we present a high-resolution reconstruction of the impact of the major trade route via Marchionis in the southern Baltic lowlands on landscape evolution since more than 800 years. We combine precisely dated annually laminated sediments from Lake Czechowskie alongside via Marchionis and pollen data at 5-year resolution together with historical data. The transformation from a quasi-natural to a cultural landscape occurred in three phases (1) an early phase until the mid-fourteenth century with slowly increasing human impact. (2) an intensification of environmental disturbance until (3) the mid-nineteenth century when via Marchionis became a modern traffic route with strong environmental impacts. Superimposed on the long-term development were repeated interruptions by short-term downturns related to societal crisis and political decisions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA