Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mar Pollut Bull ; 198: 115911, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38103498

RESUMO

The increasing threats to ecosystems and humans from marine plastic pollution require a comprehensive assessment. We present a plastisphere case study from Reunion Island, a remote oceanic island located in the Southwest Indian Ocean, polluted by plastics. We characterized the plastic pollution on the island's coastal waters, described the associated microbiome, explored viable bacterial flora and the presence of antimicrobial resistant (AMR) bacteria. Reunion Island faces plastic pollution with up to 10,000 items/km2 in coastal water. These plastics host microbiomes dominated by Proteobacteria (80 %), including dominant genera such as Psychrobacter, Photobacterium, Pseudoalteromonas and Vibrio. Culturable microbiomes reach 107 CFU/g of microplastics, with dominance of Exiguobacterium and Pseudomonas. Plastics also carry AMR bacteria including ß-lactam resistance. Thus, Southwest Indian Ocean islands are facing serious plastic pollution. This pollution requires vigilant monitoring as it harbors a plastisphere including AMR, that threatens pristine ecosystems and potentially human health through the marine food chain.


Assuntos
Microbiota , Poluentes Químicos da Água , Humanos , Oceano Índico , Microplásticos , Plásticos , Reunião , Bactérias , Monitoramento Ambiental , Poluentes Químicos da Água/análise
2.
Mar Pollut Bull ; 194(Pt A): 115343, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37531795

RESUMO

We analyzed plastic debris ingested by loggerheads from bycatch between 2007 and 2021 in the Southwest Indian Ocean (SWIO). We also analyzed plastic debris accumulated on beaches of the east coast of Madagascar as a proxy for ocean plastics to compare the characteristics of beached plastics and plastic ingested by turtles. We conducted a "brand audit" of the plastics to determine their country of origin. An oceanic circulation model was used to identify the most likely sources of plastics in the SWIO. In total, 202 of the 266 loggerheads analyzed had ingested plastics. Plastics categorized as "hard" and "white" were equally dominant in loggerheads and on beaches, suggesting no diet selectivity. Both the brand audit and circulation modeling demonstrated that Southeast Asia is the main source of plastic pollution in the region. This study demonstrates that loggerheads can be used as bioindicators of plastic pollution in the SWIO.


Assuntos
Tartarugas , Poluentes da Água , Animais , Plásticos , Oceano Índico , Poluentes da Água/análise , Cor
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA