Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Control Release ; 369: 404-419, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38508528

RESUMO

Neurotrophic growth factors such as glial cell line-derived neurotrophic factor (GDNF) and brain-derived neurotrophic factor (BDNF) have been considered as potential therapeutic candidates for neurodegenerative disorders due to their important role in modulating the growth and survival of neurons. However, clinical translation remains elusive, as their large size hinders translocation across the blood-brain barrier (BBB), and their short half-life in vivo necessitates repeated administrations. Local delivery to the brain offers a potential route to the target site but requires a suitable drug-delivery system capable of releasing these proteins in a controlled and sustained manner. Herein, we develop a cryogel microcarrier delivery system which takes advantage of the heparin-binding properties of GDNF and BDNF, to reversibly bind/release these growth factors via electrostatic interactions. Droplet microfluidics and subzero temperature polymerization was used to create monodisperse cryogels with varying degrees of negative charge and an average diameter of 20 µm. By tailoring the inclusion of 3-sulfopropyl acrylate (SPA) as a negatively charged moiety, the release duration of these two growth factors could be adjusted to range from weeks to half a year. 80% SPA cryogels and 20% SPA cryogels were selected to load GDNF and BDNF respectively, for the subsequent biological studies. Cell culture studies demonstrated that these cryogel microcarriers were cytocompatible with neuronal and microglial cell lines, as well as primary neural cultures. Furthermore, in vivo studies confirmed their biocompatibility after administration into the brain, as well as their ability to deliver, retain and release GDNF and BDNF in the striatum. Overall, this study highlights the potential of using cryogel microcarriers for long-term delivery of neurotrophic growth factors to the brain for neurodegenerative disorder therapeutics.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Encéfalo , Criogéis , Fator Neurotrófico Derivado de Linhagem de Célula Glial , Criogéis/química , Fator Neurotrófico Derivado de Linhagem de Célula Glial/administração & dosagem , Animais , Fator Neurotrófico Derivado do Encéfalo/administração & dosagem , Encéfalo/metabolismo , Sistemas de Liberação de Medicamentos , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Preparações de Ação Retardada , Ratos Sprague-Dawley , Humanos , Masculino , Ratos
2.
ACS Synth Biol ; 12(12): 3695-3703, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37965889

RESUMO

Microfluidically fabricated polymer microgels are used as an experimental platform to analyze protein-DNA interactions regulating bacterial cell division. In particular, we focused on the nucleoid-associated protein SlmA, which forms a nucleoprotein complex with short DNA binding sequences (SBS) that acts as a negative regulator of the division ring stability in Escherichia coli. To mimic the bacterial nucleoid as a dense DNA region of a bacterial cell and investigate the influence of charge and permeability on protein binding and diffusion in there, we have chosen nonionic polyethylene glycol and anionic hyaluronic acid as precursor materials for hydrogel formation, previously functionalized with SBS. SlmA binds specifically to the coupled SBS for both types of microgels while preferentially accumulating at the microgels' surface. We could control the binding specificity by adjusting the buffer composition of the DNA-functionalized microgels. The microgel charge did not impact protein binding; however, hyaluronic acid-based microgels exhibit a higher permeability, promoting protein diffusion; thus, they were the preferred choice for preparing nucleoid mimics. The approaches described here provide attractive tools for bottom-up reconstitution of essential cellular processes in media that more faithfully reproduce intracellular environments.


Assuntos
Proteínas de Escherichia coli , Microgéis , Proteínas de Escherichia coli/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Transporte/genética , Ácido Hialurônico/metabolismo , Polímeros/metabolismo , Escherichia coli/metabolismo , DNA/metabolismo
3.
Mater Adv ; 3(15): 6179-6190, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35979502

RESUMO

Stretching individual living cells with light is a standard method to assess their mechanical properties. Yet, heat introduced by the laser light of optical stretchers may unwittingly change the mechanical properties of cells therein. To estimate the temperature induced by an optical trap, we introduce cell-sized, elastic poly(N-isopropylacrylamide) (PNIPAAm) microgels that relate temperature changes to hydrogel swelling. For their usage as a standardized calibration tool, we analyze the effect of free-radical chain-growth gelation (FCG) and polymer-analogous photogelation (PAG) on hydrogel network heterogeneity, micromechanics, and temperature response by Brillouin microscopy and optical diffraction tomography. Using a combination of tailor-made PNIPAAm macromers, PAG, and microfluidic processing, we obtain microgels with homogeneous network architecture. With that, we expand the capability of standardized microgels in calibrating and validating cell mechanics analysis, not only considering cell and microgel elasticity but also providing stimuli-responsiveness to consider dynamic changes that cells may undergo during characterization.

4.
Gels ; 8(2)2022 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-35200499

RESUMO

In recent years, stimuli-responsive hydrogels have gained tremendous interest in designing complex smart 4D materials for applications ranging from biomedicine to soft electronics that can change their properties on demand over time. However, at present, a hydrogel's response is often induced by merely a single stimulus, restricting its broader applicability. The controlled hierarchical assembly of various hydrogel building blocks, each with a tailored set of mechanical and physicochemical properties as well as programmed stimulus response, may potentially enable the design and fabrication of multi-responsive polymer parts that process complex operations, like signal routing dependent on different stimuli. Since inter-connection stability of such building blocks directly accompanies the transmission of information across building blocks and is as important as the building property itself to create complex 4D materials, we provide a study on the utility of an inter-crosslinking mechanism based on UV-induced 2,3-dimethylmaleimide (DMMI) dimerization to inter-connect acrylamide-based and N-isopropylacrylamide-based millimeter-sized cubic building blocks, respectively. The resulting dual-crosslinked assemblies are freestanding and stable against contraction-expansion cycles in solution. In addition, the approach is also applicable for connecting microfluidically fabricated, micrometer-sized hydrogel spheres, with the resulting assemblies being processable and mechanical stable, likewise resisting contraction-expansion in different solvents, for instance.

5.
J Mater Chem B ; 10(10): 1663-1674, 2022 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-35195648

RESUMO

The soft colloidal probe (SCP) assay is a highly versatile sensing principle employing micrometer-sized hydrogel particles as optomechanical transducer elements. We report the synthesis, optimization, and conjugation of SCPs with defined narrow size distribution and specifically tailored mechanical properties and functionalities for integration into a microinterferometric optomechanical biosensor platform. Droplet-based microfluidics was used to crosslink polyethylene glycol (PEG) macromonomers by photocrosslinking and thiol-Michael addition. The effect of several synthesis parameters, i.e. PEG and radical initiator solid content, molecular weight and architecture of macromonomers, as well as UV exposure time and energy, were examined. SCPs were characterized with regard to the conversion of contained functional groups, morphology and mechanical properties by bright-field, confocal laser scanning and reflection interference contrast microscopy, as well as force spectroscopy. Functional groups were introduced during SCP synthesis and by several post-synthesis procedures, based on photoradical grafting and thiol-Michael addition. Preparation of SCPs by thiol-Michael addition and subsequent coupling of maleimide derivatives to unreacted thiols proved to be the superior strategy, while other approaches were associated with changes in the properties of the SCP. The newly developed SCPs were tested for their sensing capabilities employing the biotin-streptavidin-system. Biotin detection in the range of 10-7 to 10-10 M verified the concept of the synthesis strategy and the advantage of using monodisperse SCPs for easier and faster sensing applications of the SCP assay.


Assuntos
Técnicas Biossensoriais , Hidrogéis , Biotina , Coloides , Microfluídica/métodos , Polietilenoglicóis/química , Compostos de Sulfidrila
6.
Adv Sci (Weinh) ; 9(10): e2105319, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35043598

RESUMO

With the definition of the 3R principle by Russel and Burch in 1959, the search for an adequate substitute for animal testing has become one of the most important tasks and challenges of this time, not only from an ethical, but also from a scientific, economic, and legal point of view. Microtissue-based in vitro model systems offer a valuable approach to address this issue by accounting for the complexity of natural tissues in a simplified manner. To increase the functionality of these model systems and thus make their use as a substitute for animal testing more likely in the future, the fundamentals need to be continuously improved. Corresponding requirements exist in the development of multifunctional, hydrogel-based materials, whose properties are considered in this review under the aspects of processability, adaptivity, biocompatibility, and stability/degradability.


Assuntos
Alternativas aos Testes com Animais , Hidrogéis , Animais
7.
Soft Matter ; 17(45): 10312-10321, 2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34664052

RESUMO

Microscopic hydrogels, also referred to as microgels, find broad application in life and materials science. A well-established technique for fabricating uniform microgels is droplet microfluidics. Here, optimal mixing of hydrogel precursor components is crucial to yield homogeneous microgels with respect to their morphology, mechanics, and distribution of functional moieties. However, when processing premixed polymer precursors that are highly reactive, fast or even instantaneous gelation inside fluid reservoirs or the microchannels of the flow cell commonly occurs, leading to an increase of fluid viscosity over time, and thus exacerbating the intrinsic control over fluid flow rates, droplet and microgel uniformity, which are key selling points of microfluidics in material design. To address these challenges, we utilize microflow cells with integrated electrodes, which enable fast addition and mixing of hydrogel precursors on demand by means of emulsion droplet coalescence. Here, two populations of surfactant-stabilized aqueous droplets - the first containing the material basis of the microgel, and the second containing another gel-forming component (e.g., a crosslinker) are formed at two consecutive microchannel junctions and merged via temporary thin-film instability. Our approach provides the ability to process such hydrogel systems that are otherwise challenging to process into uniform droplets and microgels by conventional droplet microfluidics. To demonstrate its versatility, we fabricate microgels with uniform shape and composition using fast hydrogelation via thiol-Michael addition reaction or non-covalent self-assembly. Furthermore, we elucidate the limitations of electrocoalescence of reactive hydrogel precursors by processing sodium alginate, crosslinked by calcium-induced ionic interactions. For this instantaneous type of hydrogelation, electrocoalescence of alginate and calcium ions does not result in the formation of morphologically isotropic microgels. Instead, it enables the creation of anisotropic microgel morphologies with tunable shape, which have previously only been achieved by selective crosslinking of elaborate higher-order emulsions or by aqueous two-phase systems as microgel templates.


Assuntos
Hidrogéis , Microgéis , Microfluídica , Polímeros , Tensoativos
8.
ACS Appl Mater Interfaces ; 13(26): 31086-31101, 2021 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-34176257

RESUMO

We develop resins for high-resolution additive manufacturing of flexible micromaterials via projection microstereolithography (PµSL) screening formulations made from monomer 2-phenoxyethyl acrylate, the cross-linkers Ebecryl 8413, tri(propyleneglycol) diacrylate or 1,3,5-triallyl-1,3,5-triazine-2,4,6(1H,3H,5H)-trione, the photoabsorber Sudan 1, and the photoinitiator diphenyl(2,4,6-trimethylbenzoyl)phosphine oxide. PµSL-printed polymer micromaterials made from this resin library are characterized regarding achievable layer thickness depending on UV exposure energy, and for mechanical as well as optical properties. The best-candidate resin from this screening approach allows for 3D-printing transparent microchannels with a minimum cross section of approximately 35 × 46 µm2, which exhibit proper solvent resistance against water, isopropanol, ethanol, n-hexane, and HFE-7500. The mechanical properties are predestined for 3D-printing microfluidic devices with integrated functional units that require high material flexibility. Exemplarily, we design flexible microchannels for on-demand regulation of microdroplet sizes in microemulsion formation. Our two outlines of integrated droplet regulators operate by injecting defined volumes of air, which deform the droplet-forming microchannel cross-junction, and change the droplet size therein. With this study, we expand the library of functional resins for PµSL printing toward flexible materials with micrometer resolution and provide the basis for further exploration of these materials, e.g., as microstructured cell-culturing substrates with defined mechanics.

9.
Molecules ; 26(9)2021 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-34068649

RESUMO

Droplet microfluidics-the art and science of forming droplets-has been revolutionary for high-throughput screening, directed evolution, single-cell sequencing, and material design. However, traditional fabrication techniques for microfluidic devices suffer from several disadvantages, including multistep processing, expensive facilities, and limited three-dimensional (3D) design flexibility. High-resolution additive manufacturing-and in particular, projection micro-stereolithography (PµSL)-provides a promising path for overcoming these drawbacks. Similar to polydimethylsiloxane-based microfluidics 20 years ago, 3D printing methods, such as PµSL, have provided a path toward a new era of microfluidic device design. PµSL greatly simplifies the device fabrication process, especially the access to truly 3D geometries, is cost-effective, and it enables multimaterial processing. In this review, we discuss both the basics and recent innovations in PµSL; the material basis with emphasis on custom-made photopolymer formulations; multimaterial 3D printing; and, 3D-printed microfluidic devices for emulsion formation as our focus application. Our goal is to support researchers in setting up their own PµSL system to fabricate tailor-made microfluidics.

10.
Biomaterials ; 271: 120712, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33618220

RESUMO

The human brain has unique features that are difficult to study in animal models, including the mechanisms underlying neurodevelopmental and psychiatric disorders. Despite recent advances in human primary brain tissue culture systems, the use of these models to elucidate cellular disease mechanisms remains limited. A major reason for this is the lack of tools available to precisely manipulate a specific area of the tissue in a reproducible manner. Here we report an easy-to-use tool for site-specific manipulation of human brain tissue in culture. We show that line-shaped cryogel scaffolds synthesized with precise microscale dimensions allow the targeted delivery of a reagent to a specific region of human brain tissue in culture. 3-sulfopropyl acrylate (SPA) was incorporated into the cryogel network to yield a negative surface charge for the reversible binding of molecular cargo. The fluorescent dyes BODIPY and DiI were used as model cargos to show that placement of dye loaded scaffolds onto brain tissue in culture resulted in controlled delivery without a burst release, and labelling of specific regions without tissue damage. We further show that cryogels can deliver tetrodotoxin to tissue, inhibiting neuronal function in a reversible manner. The robust nature and precise dimensions of the cryogel resulted in a user-friendly and reproducible tool to manipulate primary human tissue cultures. These easy-to-use cryogels offer an innovate approach for more complex manipulations of ex-vivo tissue.


Assuntos
Criogéis , Engenharia Tecidual , Animais , Encéfalo , Humanos , Modelos Animais , Alicerces Teciduais
11.
Angew Chem Int Ed Engl ; 60(12): 6724-6732, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33283395

RESUMO

As low-molecular-weight hydrogelators, dipeptide hydrogel materials are suited for embedding multiple organic molecules and inorganic nanoparticles. Herein, a simple but precisely controllable method is presented that enables the fabrication of dipeptide-based hydrogels by supramolecular assembly inside microfluidic channels. Water-soluble quantum dots (QDs) as well as premixed porphyrins and a dipeptide in dimethyl sulfoxide (DMSO) were injected into a Y-shaped microfluidic junction. At the DMSO/water interface, the confined fabrication of a dipeptide-based hydrogel was initiated. Thereafter, the as-formed hydrogel flowed along a meandering microchannel in a continuous fashion, gradually completing gelation and QD entrapment. In contrast to hydrogelation in conventional test tubes, microfluidically controlled hydrogelation led to a tailored dipeptide hydrogel regarding material morphology and nanoparticle distribution.

12.
Polymers (Basel) ; 12(8)2020 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-32781609

RESUMO

The demand for tailored, micrometer-scaled biomaterials in cell biology and (cell-free) biotechnology has led to the development of tunable microgel systems based on natural polymers, such as hyaluronic acid (HA). To precisely tailor their physicochemical and mechanical properties and thus to address the need for well-defined microgel systems, in this study, a bottom-up material guide is presented that highlights the synergy between highly selective bio-orthogonal click chemistry strategies and the versatility of a droplet microfluidics (MF)-assisted microgel design. By employing MF, microgels based on modified HA-derivates and homobifunctional poly(ethylene glycol) (PEG)-crosslinkers are prepared via three different types of click reaction: Diels-Alder [4 + 2] cycloaddition, strain-promoted azide-alkyne cycloaddition (SPAAC), and UV-initiated thiol-ene reaction. First, chemical modification strategies of HA are screened in-depth. Beyond the microfluidic processing of HA-derivates yielding monodisperse microgels, in an analytical study, we show that their physicochemical and mechanical properties-e.g., permeability, (thermo)stability, and elasticity-can be systematically adapted with respect to the type of click reaction and PEG-crosslinker concentration. In addition, we highlight the versatility of our HA-microgel design by preparing non-spherical microgels and introduce, for the first time, a selective, hetero-trifunctional HA-based microgel system with multiple binding sites. As a result, a holistic material guide is provided to tailor fundamental properties of HA-microgels for their potential application in cell biology and (cell-free) biotechnology.

13.
ACS Synth Biol ; 9(7): 1823-1832, 2020 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-32525654

RESUMO

Combinatorial biosynthesis has great potential for designing synthetic circuits and amplifying the production of new active compounds. Studies on multienzyme cascades are extremely useful for improving our knowledge on enzymatic catalysis. In particular, the elucidation of enzyme substrate promiscuity can be potentially used for bioretrosynthetic approaches, leading to the design of alternative and more convenient routes to produce relevant molecules. In this perspective, plant-derived polyketides are extremely adaptable to those synthetic biological applications. Here, we present a combination of an in vitro CoA ligase activity assay coupled with a bacterial multigene expression system that leads to precursor-directed biosynthesis of 21 flavonoid derivatives. When the vast knowledge from protein databases is exploited, the herein presented procedure can be easily repeated with additional plant-derived polyketides. Lastly, we report an efficient in vivo expression system that can be further exploited to heterologously express pathways not necessarily related to plant polyketide synthases.


Assuntos
Arabidopsis/genética , Arabidopsis/metabolismo , Flavanonas/biossíntese , Policetídeo Sintases/metabolismo , Policetídeos/metabolismo , Aciltransferases , Proteínas de Arabidopsis , Chalconas/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Vetores Genéticos , Malonil Coenzima A/metabolismo , Plasmídeos/genética , Especificidade por Substrato , Biologia Sintética/métodos
14.
ACS Omega ; 5(13): 7059-7064, 2020 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-32280846

RESUMO

Single-stranded deoxyribonucleic acids have an enormous potential for catalysis by applying tailored sequences of nucleotides for individual reaction conditions and substrates. If such a sequence is guanine-rich, it may arrange into a three-dimensional structure called G-quadruplex and give rise to a catalytically active DNA molecule, a DNAzyme, upon addition of hemin. Here, we present a DNAzyme-mediated reaction, which is the oxidation of l-tyrosine toward dityrosine by hydrogen peroxide. With an optimal stoichiometry between DNA and hemin of 1:10, we report an activity of 101.2 ± 3.5 µUnits (µU) of the artificial DNAzyme Dz-00 compared to 33.0 ± 1.8 µU of free hemin. Exemplarily, DNAzymes may take part in neurodegeneration caused by amyloid beta (Aß) aggregation due to l-tyrosine oxidation. We show that the natural, human genome-derived DNAzyme In1-sp is able to oxidize Aß peptides with a 4.6% higher yield and a 33.3% higher velocity of the reaction compared to free hemin. As the artificial DNAzyme Dz-00 is even able to catalyze Aß peptide oxidation with a 64.2% higher yield and 337.1% higher velocity, an in-depth screening of human genome-derived DNAzymes may identify further candidates with similarly high catalytic activity in Aß peptide oxidation.

15.
Micromachines (Basel) ; 11(3)2020 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-32111058

RESUMO

Three-dimensional (3D) printing of microfluidic devices continuously replaces conventional fabrication methods. A versatile tool for achieving microscopic feature sizes and short process times is micro-stereolithography (µSL). However, common resins for µSL lack biocompatibility and are cytotoxic. This work focuses on developing new photo-curable resins as a basis for µSL fabrication of polymer materials and surfaces for cell culture. Different acrylate- and methacrylate-based compositions are screened for material characteristics including wettability, surface roughness, and swelling behavior. For further understanding, the impact of photo-absorber and photo-initiator on the cytotoxicity of 3D-printed substrates is studied. Cell culture experiments with human umbilical vein endothelial cells (HUVECs) in standard polystyrene vessels are compared to 3D-printed parts made from our library of homemade resins. Among these, after optimizing material composition and post-processing, we identify selected mixtures of poly(ethylene glycol) diacrylate (PEGDA) and poly(ethylene glycol) methyl ethyl methacrylate (PEGMEMA) as most suitable to allow for fabricating cell culture platforms that retain both the viability and proliferation of HUVECs. Next, our PEGDA/PEGMEMA resins will be further optimized regarding minimal feature size and cell adhesion to fabricate microscopic (microfluidic) cell culture platforms, e.g., for studying vascularization of HUVECs in vitro.

16.
RSC Adv ; 10(66): 40588-40596, 2020 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-35520868

RESUMO

In the present work, microgels were utilized as a cell-free reaction environment to produce a functional malonyl-CoA synthetase (deGFP-MatB) under geometry-controlled transcription and translation. Our approach combines the straight-forward optimization of overall protein yield of an E. coli-based cell-free protein synthesis (CFPS) system based on concentration screening of magnesium and potassium glutamate, DNA as well as polyethylene glycol (PEG), and its innovative usage in microgel-based production of a key enzyme of the polyketide synthesis pathway. After partial modification of the carboxyl groups of hyaluronic acid (HA) with 5'-methylfuran groups via 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methyl-morpholinium chloride (DMTMM)-activation, these were further functionalized with dibenzocyclooctyne (DBCO) and nitrilotriacetic acid (NTA) groups by bio-orthogonal [4+2] Diels-Alder cycloaddition to yield a bifunctional macromer. After coupling the DBCO groups with azide-functionalized DNA, containing the genetic information for deGFP-MatB, via strain-promoted azide-alkyne cycloaddition (SPAAC), the DNA-/NTA-functionalized HA macromer was utilized as base material together with maleimide-functionalized PEG (PEG-mal2) as the crosslinker to form bifunctional microgels utilizing water-in-oil (W/O) microemulsions. As-formed microgels were incubated with nickel sulfate to activate the NTA groups and provide binding sites for deGFP-MatB, which contained six histidine residues (His-tag) for that purpose. The optimized CFPS mixture was loaded into the microgels to initiate the formation of deGFP-MatB, which was detected by a clear increase in fluorescence exclusively inside the microgel volume. Functionality of both, the bound and the decoupled enzyme was proven by reaction with malonate to yield malonyl CoA, as confirmed by a colorimetric assay.

17.
Biomater Sci ; 8(1): 101-108, 2019 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-31674601

RESUMO

Multiphasic in vitro models with cross-scale heterogeneity in matrix properties and/or cellular composition can reflect the structural and compositional complexity of living tissues more faithfully, thereby creating new options for pathobiology and drug development studies. Herein, a new class of tunable microgel-in-gel materials is reported that build on a versatile platform of multifunctional poly(ethylene glycol)-heparin gel types and integrates monodisperse, cell-laden microgels within cell-laden bulk hydrogel matrices. A novel microfluidic approach was developed to enable the high-throughput fabrication of microgels of in situ adjustable diameters, stiffness, degradability and biomolecular functionalization. By choosing structure and composition of the microgel and the bulk gel compartments independently, our microgel-in-gel arrangements provide cross-scale control over tissue-mimetic features and pave the way for culture systems with designed mesoenvironmental characteristics. The potentialities of the introduced approach are exemplarily shown by creating a reductionistic in vitro model of vascularized prostate cancer tissue.


Assuntos
Microgéis/química , Neoplasias da Próstata/patologia , Engenharia Tecidual/métodos , Humanos , Hidrogéis , Masculino , Técnicas Analíticas Microfluídicas/instrumentação , Modelos Biológicos
18.
ACS Appl Mater Interfaces ; 11(29): 26307-26313, 2019 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-31298522

RESUMO

We introduce a novel concept for mechanosensitive hydrogel microparticles, which translate deformation into changes in fluorescence and can thus function as mechanical probes. The hydrogel particles with controlled polymer network are produced via droplet microfluidics from poly(ethylene glycol) (PEG) precursors. Förster resonance energy transfer donors and acceptors are coupled to the PEG hydrogel network for reporting local deformations as fluorescence shifts. We show that global network deformations, which occur upon drying/rehydration, can be detected via a characteristic fluorescence shift. Combined characterization with confocal laser scanning microscopy and atomic force microscopy (AFM) shows that also local deformation of the particles can be detected. Using AFM, the mechanical properties of the particles can be quantified, which allows linking strain with stress and thus force sensing in a three-dimensional environment. Microfluidic material design allows for precisely varying the size of our hydrogel microparticles as well as their mechanical properties and polymer network structure with regard to the choice of the macromolecular precursors and their functionalization with fluorophores. Thus, concomitant changes in mechanical properties and mechanosensitivity qualify these hydrogel microparticles as an adjustable material platform for force sensing in structural mechanics or cell culturing.

19.
J Mater Sci Mater Med ; 30(6): 65, 2019 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-31127393

RESUMO

Hyaluronan (HA)-based microgels generated in a microfluidic approach, containing an artificial extracellular matrix composed of collagen and high-sulfated hyaluronan (sHA3), were incorporated into a HA/collagen-based hydrogel matrix. This significantly enhanced the retention of noncrosslinked sHA3 within the gels enabling controlled sHA3 presentation. Gels containing sHA3 bound higher amounts of transforming growth factor-ß1 (TGF-ß1) compared to pure HA/collagen hydrogels. Moreover, the presence of sHA3-containing microgels improved the TGF-ß1 retention within the hydrogels. These findings are promising for developing innovative biomaterials with adjustable sHA3 release and growth factor interaction profiles to foster skin repair, e.g., by rebalancing dysregulated TGF-ß1 levels.


Assuntos
Colágeno/química , Ácido Hialurônico/química , Hidrogéis/química , Microgéis/química , Fator de Crescimento Transformador beta1/metabolismo , Animais , Materiais Biocompatíveis/química , Bovinos , Matriz Extracelular/metabolismo , Glicosaminoglicanos/química , Humanos , Microfluídica , Ratos , Pele/metabolismo , Pele/patologia , Streptococcus , Sulfatos/metabolismo , Cicatrização
20.
Polymers (Basel) ; 10(10)2018 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-30960980

RESUMO

Polysaccharide-based microgels have broad applications in multi-parametric cell cultures, cell-free biotechnology, and drug delivery. Multicomponent reactions like the Passerini three-component and the Ugi four-component reaction are shown in here to be versatile platforms for fabricating these polysaccharide microgels by droplet microfluidics with a narrow size distribution. While conventional microgel formation requires pre-modification of hydrogel building blocks to introduce certain functionality, in multicomponent reactions one building block can be simply exchanged by another to introduce and extend functionality in a library-like fashion. Beyond synthesizing a range of polysaccharide-based microgels utilizing hyaluronic acid, alginate and chitosan, exemplary in-depth analysis of hyaluronic acid-based Ugi four-component gels is conducted by colloidal probe atomic force microscopy, confocal Brillouin microscopy, quantitative phase imaging, and fluorescence correlation spectroscopy to elucidate the capability of microfluidic multicomponent reactions for forming defined polysaccharide microgel networks. Particularly, the impact of crosslinker amount and length is studied. A higher network density leads to higher Young's moduli accompanied by smaller pore sizes with lower diffusion coefficients of tracer molecules in the highly homogeneous network, and vice versa. Moreover, tailored building blocks allow for crosslinking the microgels and incorporating functional groups at the same time as demonstrated for biotin-functionalized, chitosan-based microgels formed by Ugi four-component reaction. To these microgels, streptavidin-labeled enzymes are easily conjugated as shown for horseradish peroxidase (HRP), which retains its activity inside the microgels.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA