Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Redox Biol ; 75: 103264, 2024 09.
Artigo em Inglês | MEDLINE | ID: mdl-38972295

RESUMO

MIF is a ubiquitous protein involved in proinflammatory processes, which undergoes an oxidation-driven conformational change to oxidized (ox)MIF. We demonstrate that hypochlorous acid, produced by neutrophil-released myeloperoxidase (MPO) under inflammatory conditions, effectively oxidizes MIF into the oxMIF isoform, which is specifically recognized by the anti-oxMIF therapeutic antibody, ON104. NMR investigation of MIF oxidized by the MPO system revealed increased flexibility throughout the MIF structure, including at several catalytic and allosteric sites. Mass spectrometry of MPO-oxMIF revealed methionines as the primary site of oxidation, whereas Pro2 and Tyr99/100 remained almost unmodified. ELISA, SPR and cell-based assays demonstrated that structural changes caused by MPO-driven oxidation promoted binding of oxMIF to its receptor, CD74, which does not occur with native MIF. These data reveal the environment and modifications that facilitate interactions between MIF and its pro-inflammatory receptor, and a route for therapeutic intervention targeting the oxMIF isoform.


Assuntos
Antígenos de Diferenciação de Linfócitos B , Antígenos de Histocompatibilidade Classe II , Oxirredutases Intramoleculares , Fatores Inibidores da Migração de Macrófagos , Oxirredução , Ligação Proteica , Fatores Inibidores da Migração de Macrófagos/metabolismo , Fatores Inibidores da Migração de Macrófagos/química , Humanos , Antígenos de Diferenciação de Linfócitos B/metabolismo , Antígenos de Diferenciação de Linfócitos B/química , Antígenos de Histocompatibilidade Classe II/metabolismo , Antígenos de Histocompatibilidade Classe II/química , Oxirredutases Intramoleculares/metabolismo , Oxirredutases Intramoleculares/química , Peroxidase/metabolismo
2.
Mol Cancer Ther ; : OF1-OF11, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38963557

RESUMO

Radioimmunotherapy (RIT) uses monoclonal antibodies to deliver radionuclides to cancer cells or the tumor microenvironment and has shown promise in treating localized and diffuse tumors. Although RIT agents have gained FDA/EMA approval for certain hematologic malignancies, effectiveness of RIT in treating solid tumors remains limited. In this study, we present PreTarg-it®, a novel approach for pretargeted RIT, providing optimized delivery of payloads in a two-step regimen. The effectiveness of PreTarg-it® is demonstrated by a powerful combination of ON105, a novel bispecific antibody against both oxidized macrophage migration inhibitory factor (oxMIF) and the histamine-succinyl-glycyl (HSG) hapten, as the first component and the radioactively labeled DOTA-di-HSG peptide as the second component in murine models of cancer. Mice bearing either subcutaneous mouse colorectal CT26 or human pancreatic CFPAC-1 tumors received an i.v. injection of ON105. After ON105 had accumulated in the tumor and cleared from circulation to approximately 1% to 3% of its peak concentration, 177Lu-DOTA-di-HSG peptide was administered. A single PreTarg-it® treatment cycle resulted in tumor regression when mice bearing CT26 tumors were given the highest treatment dose with a pretargeting delay of 3 days. Administered with a 5-day interval, the highest dose arrested tumor growth in both CT26 syngrafts and CFPAC-1 xenografts. In all cases, the highest treatment dose resulted in 100% survival at the study endpoint, whereas the control cohorts showed 0% and 60% survival in the CT26 and CFPAC-1 models, respectively. Therefore, PreTarg-it® holds potential as a novel and potent therapy for patients with hard-to-treat solid tumors, such as pancreatic cancer, as well as those with late-stage malignancies.

3.
Mol Cancer Ther ; 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38833646

RESUMO

Radioimmunotherapy (RIT) uses mAbs to deliver radionuclides to cancer cells or the tumor microenvironment and has shown promise in treating localized and diffuse tumors. While RIT agents have gained FDA/EMA approval for certain hematological malignancies, effectiveness of RIT in treating solid tumors remains limited. Here we present PreTarg-it®, a novel approach for pretargeted radioimmunotherapy, providing optimized delivery of payloads in a two-step regimen. The effectiveness of PreTarg-it® is demonstrated by a powerful combination of ON105, a novel bispecific antibody against both oxMIF and the histamine-succinyl-glycyl (HSG) hapten, as the first component and the radioactively labeled DOTA-di-HSG peptide as the second component in murine models of cancer. Mice bearing either subcutaneous mouse colorectal CT26 or human pancreatic CFPAC-1 tumors received an intravenous injection of ON105. After ON105 had accumulated in the tumor and cleared from circulation to approximately 1-3% of its peak concentration, 177Lu-DOTA-di-HSG peptide was administered. A single PreTarg-it® treatment cycle resulted in tumor regression when mice bearing CT26 tumors were given the highest treatment dose with a pretargeting delay of three days. Administered with a 5-day interval, the highest dose arrested tumor growth in both CT26 syngrafts and CFPAC-1 xenografts. In all cases, the highest treatment dose resulted in 100% survival at the study endpoint whereas the control cohorts showed 0% and 60% survival in the CT26 and CFPAC-1 models, respectively. Therefore, PreTarg-it® holds potential as a novel and potent therapy for patients with hard-to-treat solid tumors such as pancreatic cancer, as well as those with late-stage malignancies.

4.
Eur J Pharmacol ; 956: 175997, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37579967

RESUMO

Macrophage Migration Inhibitory Factor (MIF) is a pleiotropic inflammatory cytokine that emerged as a pivotal regulator in the pathogenesis of several autoimmune diseases including rheumatoid arthritis (RA). MIF occurs in two immunologically distinct conformational isoforms, indicated as reduced (redMIF) and oxidized MIF (oxMIF) where the latter exerts disease-related activities. In this study we demonstrate the presence of circulating oxMIF in RA patients and investigate the in vivo effects of an oxMIF-neutralizing antibody in a murine model of RA. By advanced antibody engineering we generated the fully human anti-oxMIF antibody ON104 with abolished effector functions. The therapeutic potential of ON104 was tested in a model of Collagen-Induced Arthritis (CIA) in DBA/1j mice. At disease onset, the mice received ON104 twice a week for three weeks. Clinical symptoms were assessed daily, and histological examinations of the joints were performed at the end of the study. Antibody ON104, specifically targeting human and murine oxMIF, is highly affine and does not elicit effector functions in vitro. The treatment of CIA mice with ON104 profoundly modulated disease progression with marked amelioration of clinical signs of arthritis that was associated with reduced synovial and cartilage damage and reduced F4/80-positive macrophages in the joints. These data prove that oxMIF is a relevant target in a well-known model of human RA and its specific neutralization by the antibody ON104 ameliorates clinical and histological signs of the disease in the so-treated mice. Thus, ON104 represents a new and promising treatment option for RA and possibly other autoimmune diseases.


Assuntos
Artrite Experimental , Artrite Reumatoide , Fatores Inibidores da Migração de Macrófagos , Humanos , Camundongos , Animais , Artrite Experimental/induzido quimicamente , Artrite Experimental/tratamento farmacológico , Anticorpos Monoclonais/uso terapêutico , Camundongos Endogâmicos DBA
5.
Mol Cancer Ther ; 22(5): 555-569, 2023 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-37067909

RESUMO

High levels of macrophage migration inhibitory factor (MIF) in patients with cancer are associated with poor prognosis. Its redox-dependent conformational isoform, termed oxidized MIF (oxMIF), is a promising tumor target due to its selective occurrence in tumor lesions and at inflammatory sites. A first-generation anti-oxMIF mAb, imalumab, was investigated in clinical trials in patients with advanced solid tumors, where it was well tolerated and showed signs of efficacy. However, imalumab has a short half-life in humans, increased aggregation propensity, and an unfavorable pharmacokinetic profile. Here, we aimed to optimize imalumab by improving its physicochemical characteristics and boosting its effector functions. Point mutations introduced into the variable regions reduced hydrophobicity and the antibodies' aggregation potential, and increased plasma half-life and tumor accumulation in vivo, while retaining affinity and specificity to oxMIF. The introduction of mutations into the Fc region known to increase antibody-dependent cellular cytotoxicity resulted in enhanced effector functions of the novel antibodies in vitro, whereas reduced cytokine release from human peripheral blood mononuclear cells in the absence of target antigen by the engineered anti-oxMIF mAb ON203 versus imalumab reveals a favorable in vitro safety profile. In vivo, ON203 mAb demonstrated superior efficacy over imalumab in both prophylactic and established prostate cancer (PC3) mouse xenograft models. In summary, our data highlight the potential of the second-generation anti-oxMIF mAb ON203 as a promising immunotherapy for patients with solid tumors, warranting clinical evaluation.


Assuntos
Antineoplásicos , Fatores Inibidores da Migração de Macrófagos , Neoplasias da Próstata , Masculino , Camundongos , Animais , Humanos , Fatores Inibidores da Migração de Macrófagos/genética , Fatores Inibidores da Migração de Macrófagos/química , Leucócitos Mononucleares , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/uso terapêutico , Neoplasias da Próstata/tratamento farmacológico
6.
J Immunother Cancer ; 10(9)2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36180072

RESUMO

Macrophage migration inhibitory factor (MIF) is a proinflammatory cytokine with a pleiotropic spectrum of biological functions implicated in the pathogenesis of cancer and inflammatory diseases. MIF is constitutively present in several cell types and non-lymphoid tissues and is secreted after acute stress or inflammation. MIF triggers the release of proinflammatory cytokines, overrides the anti-inflammatory effects of glucocorticoids, and exerts chemokine function, resulting in increased migration and recruitment of leukocytes into inflamed tissue. Despite this, MIF is a challenging target for therapeutic intervention because of its ubiquitous nature and presence in the circulation and tissue of healthy individuals. Oxidized MIF (oxMIF) is an immunologically distinct disease-related structural isoform found in the plasma and tissues of patients with inflammatory diseases and in solid tumor tissues. MIF converts to oxMIF in an oxidizing, inflammatory environment. This review discusses the biology and activity of MIF and the potential for autoimmune disease and cancer modification by targeting oxMIF. Anti-oxMIF antibodies reduce cancer cell invasion/migration, angiogenesis, proinflammatory cytokine production, and ERK and AKT activation. Anti-oxMIF antibodies also elicit apoptosis and alter immune cell function and/or migration. When co-administered with a glucocorticoid, anti-oxMIF antibodies produced a synergistic response in inflammatory models. Anti-oxMIF antibodies therefore counterregulate biological activities attributed to MIF. oxMIF expression has been observed in inflammatory diseases (eg, sepsis, psoriasis, asthma, inflammatory bowel disease, and systemic lupus erythematosus) and oxMIF has been detected in ovarian, colorectal, lung, and pancreatic cancers. In contrast to MIF, oxMIF is specifically detected in plasma and/or tissues of diseased patients, but not in healthy individuals. Therefore, as a druggable isoform of MIF, oxMIF represents a potential new therapeutic target in inflammatory diseases and cancer. Fully human, monoclonal anti-oxMIF antibodies have been shown to selectively bind oxMIF in preclinical and phase I studies; however, additional clinical assessments are necessary to validate their use as either a monotherapy or in combination with standard-of-care regimens (ie, immunomodulatory agents/checkpoint inhibitors, anti-angiogenic drugs, chemotherapeutics, and glucocorticoids).


Assuntos
Fatores Inibidores da Migração de Macrófagos , Neoplasias , Inibidores da Angiogênese , Anti-Inflamatórios , Anticorpos Monoclonais/uso terapêutico , Glucocorticoides/uso terapêutico , Humanos , Fatores Inibidores da Migração de Macrófagos/metabolismo , Neoplasias/tratamento farmacológico , Isoformas de Proteínas , Proteínas Proto-Oncogênicas c-akt
7.
Antibodies (Basel) ; 8(3)2019 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-31544852

RESUMO

Efficacy, safety, and manufacturability of therapeutic antibodies are influenced by their biopharmaceutical and biophysical properties. These properties can be optimized by library approaches or rationale protein design. Here, we employed a protein engineering approach to modify the variable domain of the light chain (VL) framework of an oxidized macrophage migration inhibitory factor (oxMIF)-specific antibody. The amendment of the antibody sequence was based on homology to human germline VL genes. Three regions or positions were identified in the VL domain-L1-4, L66, L79-and mutated independently or in combination to match the closest germline V gene. None of the mutations altered oxMIF specificity or affinity, but some variants improved thermal stability, aggregation propensity, and resulted in up to five-fold higher expression. Importantly, the improved biopharmaceutical properties translated into a superior pharmacokinetic profile of the antibody. Thus, optimization of the V domain framework can ameliorate the biophysical qualities of a therapeutic antibody candidate, and as result its manufacturability, and also has the potential to improve pharmacokinetics.

8.
Biochemistry ; 57(9): 1523-1532, 2018 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-29412660

RESUMO

Macrophage migration inhibitory factor (MIF) is a pro-inflammatory and tumor-promoting cytokine that occurs in two redox-dependent immunologically distinct conformational isoforms. The disease-related structural isoform of MIF (oxMIF) can be specifically and predominantly detected in the circulation of patients with inflammatory diseases and in tumor tissue, whereas the ubiquitously expressed isoform of MIF (redMIF) is abundantly expressed in healthy and diseased subjects. In this article, we report that cysteine 81 within MIF serves as a "switch cysteine" for the conversion of redMIF to oxMIF. Modulating cysteine 81 by thiol reactive agents leads to significant structural rearrangements of the protein, resulting in a decreased ß-sheet content and an increased random coil content, but maintaining the trimeric quaternary structure. This conformational change in the MIF molecule enables binding of oxMIF-specific antibodies BaxB01 and BaxM159, which showed beneficial activity in animal models of inflammation and cancer. Crystal structure analysis of the MIF-derived EPCALCS peptide, bound in its oxMIF-like conformation by the Fab fragment of BaxB01, revealed that this peptide adopts a curved conformation, making the central thiol protein oxidoreductase motif competent to undergo disulfide shuffling. We conclude that redMIF might reflect a latent zymogenic form of MIF, and formation of oxMIF leads to a physiologically relevant, i.e., enzymatically active, state.


Assuntos
Cisteína/química , Cisteína/metabolismo , Oxirredutases Intramoleculares/química , Oxirredutases Intramoleculares/metabolismo , Fatores Inibidores da Migração de Macrófagos/química , Fatores Inibidores da Migração de Macrófagos/metabolismo , Especificidade de Anticorpos , Dicroísmo Circular , Cisteína/imunologia , Ensaio de Imunoadsorção Enzimática , Mapeamento de Epitopos , Dissulfeto de Glutationa/química , Dissulfeto de Glutationa/metabolismo , Humanos , Oxirredutases Intramoleculares/imunologia , Fatores Inibidores da Migração de Macrófagos/imunologia , Modelos Moleculares , Oxirredução , Conformação Proteica , Relação Estrutura-Atividade
9.
Eur J Pharmacol ; 820: 206-216, 2018 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-29274331

RESUMO

New therapeutic agents are needed to overcome the toxicity and suboptimal efficacy observed in current treatment of glomerulonephritis (GN). BaxB01 is a fully human monoclonal antibody targeting a disease-related immunologically distinct isoform of Macrophage migration Inhibitory Factor (MIF), designated oxidized MIF (oxMIF) and locally expressed in inflammatory conditions. We report the pharmacokinetic profile of BaxB01, and its dose and exposure-related disease-modifying activity in experimentally induced rat GN. BaxB01 bound to rat oxMIF with high affinity and reduced rat macrophage migration in vitro. After intravenous administration in rats, BaxB01 demonstrated favorable pharmacokinetics, with a half-life of up to nine days. Disease modification was dose-related (≥ 10mg/kg) as demonstrated by significantly reduced proteinuria and diminished histopathological glomerular crescent formation. Importantly, a single dose was sufficient to establish an exposure-related, anti-inflammatory milieu via amelioration of glomerular cellular inflammation. Pharmacodynamic modeling corroborated these findings, consistently predicting plasma exposures that were effective in attenuating both anti-inflammatory activity and reducing loss of kidney function. This pharmacologic benefit on glomerular function and structure was sustained during established disease, while correlation analyses confirmed a link between the antibody's anti-inflammatory activity and reduced crescent formation in individual rats. Finally, safety assessment in rats showed that the experimental therapeutic was well tolerated without signs of systemic toxicity or negative impact on kidney function. These data define therapeutically relevant exposures correlated with mechanism-based activity in GN, while toxicological evaluation suggests a large therapeutic index and provides evidence for achieving safe and effective exposure to a MIF isoform-directed therapeutic in nephritis-associated disease.


Assuntos
Anticorpos Monoclonais/farmacocinética , Anticorpos Monoclonais/uso terapêutico , Glomerulonefrite/tratamento farmacológico , Glomerulonefrite/imunologia , Fatores Inibidores da Migração de Macrófagos/imunologia , Terapia de Alvo Molecular , Segurança , Animais , Anticorpos Monoclonais/efeitos adversos , Anticorpos Monoclonais/imunologia , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Progressão da Doença , Feminino , Glomerulonefrite/metabolismo , Humanos , Glomérulos Renais/efeitos dos fármacos , Glomérulos Renais/patologia , Masculino , Monócitos/citologia , Monócitos/efeitos dos fármacos , Isoformas de Proteínas/imunologia , Ratos
10.
Oncotarget ; 7(45): 73486-73496, 2016 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-27636991

RESUMO

Macrophage migration inhibitory factor (MIF) is a pleiotropic cytokine, which was shown to be upregulated in cancers and to exhibit tumor promoting properties. Unlike other cytokines, MIF is ubiquitously present in the circulation and tissue of healthy subjects. We recently described a previously unrecognized, disease-related isoform of MIF, designated oxMIF, which is present in the circulation of patients with different inflammatory diseases. In this article, we report that oxMIF is also linked to different solid tumors as it is specifically expressed in tumor tissue from patients with colorectal, pancreatic, ovarian and lung cancer. Furthermore, oxMIF can be specifically targeted by a subset of phage display-derived fully human, monoclonal anti-MIF antibodies (mAbs) that were shown to neutralize pro-tumorigenic activities of MIF in vivo. We further demonstrate that anti-oxMIF mAbs sensitize human cancer cell lines (LNCaP, PC3, A2780 and A2780ADR) to the action of cytotoxic drugs (mitoxantrone, cisplatin and doxorubicin) in vitro and in an A2780 xenograft mouse model of ovarian cancer. We conclude that oxMIF is the disease related isoform of MIF in solid tumors and a potential new diagnostic marker and drug target in cancer.


Assuntos
Biomarcadores Tumorais , Fatores Inibidores da Migração de Macrófagos/metabolismo , Neoplasias/metabolismo , Anticorpos Monoclonais/farmacologia , Antineoplásicos/farmacologia , Estudos de Casos e Controles , Linhagem Celular Tumoral , Sinergismo Farmacológico , Humanos , Fatores Inibidores da Migração de Macrófagos/antagonistas & inibidores , Fatores Inibidores da Migração de Macrófagos/sangue , Terapia de Alvo Molecular , Neoplasias/sangue , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Oxirredução
11.
J Immunol ; 195(5): 2343-52, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26209628

RESUMO

Macrophage migration inhibitory factor (MIF), a proinflammatory cytokine and counterregulator of glucocorticoids, is a potential therapeutic target. MIF is markedly different from other cytokines because it is constitutively expressed, stored in the cytoplasm, and present in the circulation of healthy subjects. Thus, the concept of targeting MIF for therapeutic intervention is challenging because of the need to neutralize a ubiquitous protein. In this article, we report that MIF occurs in two redox-dependent conformational isoforms. We show that one of the two isoforms of MIF, that is, oxidized MIF (oxMIF), is specifically recognized by three mAbs directed against MIF. Surprisingly, oxMIF is selectively expressed in the plasma and on the cell surface of immune cells of patients with different inflammatory diseases. In patients with acute infections or chronic inflammation, oxMIF expression correlated with inflammatory flare-ups. In addition, anti-oxMIF mAbs alleviated disease severity in mouse models of acute and chronic enterocolitis and improved, in synergy with glucocorticoids, renal function in a rat model of crescentic glomerulonephritis. We conclude that oxMIF represents the disease-related isoform of MIF; oxMIF is therefore a new diagnostic marker for inflammation and a relevant target for anti-inflammatory therapy.


Assuntos
Inflamação/imunologia , Inflamação/prevenção & controle , Fatores Inibidores da Migração de Macrófagos/imunologia , Terapia de Alvo Molecular/métodos , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/uso terapêutico , Western Blotting , Dexametasona/imunologia , Dexametasona/uso terapêutico , Modelos Animais de Doenças , Enterocolite/imunologia , Enterocolite/metabolismo , Enterocolite/prevenção & controle , Citometria de Fluxo , Glomerulonefrite/imunologia , Glomerulonefrite/metabolismo , Glomerulonefrite/prevenção & controle , Glucocorticoides/imunologia , Glucocorticoides/uso terapêutico , Humanos , Inflamação/metabolismo , Fatores Inibidores da Migração de Macrófagos/química , Fatores Inibidores da Migração de Macrófagos/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Oxirredução , Conformação Proteica , Isoformas de Proteínas/química , Isoformas de Proteínas/imunologia , Isoformas de Proteínas/metabolismo , Coelhos , Ratos Endogâmicos WKY
12.
Mol Cancer Ther ; 12(7): 1223-34, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23619302

RESUMO

Macrophage migration inhibitory factor (MIF) is a proinflammatory cytokine, originally discovered for its eponymous effect and now known for pleiotropic biologic properties in immunology and oncology. Circulating MIF levels are elevated in several types of human cancer including prostate cancer. MIF is released presumably by both stromal and tumor cells and enhances malignant growth and metastasis by diverse mechanisms, such as stimulating tumor cell proliferation, suppressing apoptotic death, facilitating invasion of the extracellular matrix, and promoting angiogenesis. Recently described fully human anti-MIF antibodies were tested in vitro and in vivo for their ability to influence growth rate and invasion of the human PC3 prostate cancer cell line. In vitro, the selected candidate antibodies BaxG03, BaxB01, and BaxM159 reduced cell growth and viability by inhibiting MIF-induced phosphorylation of the central kinases p44/42 mitogen-activated protein kinase [extracellular signal-regulated kinase-1 and -2 (ERK1/2)] and protein kinase B (AKT). Incubation of cells in the presence of the antibodies also promoted activation of caspase-3/7. The antibodies furthermore inhibited MIF-promoted invasion and chemotaxis as transmigration through Matrigel along a MIF gradient was impaired. In vivo, pharmacokinetic parameters (half-life, volume of distribution, and bioavailability) of the antibodies were determined and a proof-of-concept was obtained in a PC3-xenograft mouse model. Treatment with human anti-MIF antibodies blunted xenograft tumor growth in a dose-dependent manner. We therefore conclude that the anti-MIF antibodies described neutralize some of the key tumor-promoting activities of MIF and thus limit tumor growth in vivo.


Assuntos
Anticorpos Monoclonais/farmacologia , Movimento Celular/efeitos dos fármacos , Fatores Inibidores da Migração de Macrófagos/imunologia , Neoplasias da Próstata/tratamento farmacológico , Animais , Anticorpos Monoclonais/imunologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Humanos , Masculino , Camundongos , Camundongos Nus , Neoplasias da Próstata/imunologia , Neoplasias da Próstata/patologia , Transdução de Sinais , Ensaios Antitumorais Modelo de Xenoenxerto
13.
J Biol Chem ; 287(10): 7446-55, 2012 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-22238348

RESUMO

The macrophage migration inhibitory factor (MIF) is a proinflammatory cytokine that recently emerged as an attractive therapeutic target for a variety of diseases. A diverse panel of fully human anti-MIF antibodies was generated by selection from a phage display library and extensively analyzed in vitro. Epitope mapping studies identified antibodies specific for linear as well as structural epitopes. Experimental animal studies revealed that only those antibodies binding epitopes within amino acids 50-68 or 86-102 of the MIF molecule exerted protective effects in models of sepsis or contact hypersensitivity. Within the MIF protein, these two binding regions form a ß-sheet structure that includes the MIF oxidoreductase motif. We therefore conclude that this ß-sheet structure is a crucial region for MIF activity and a promising target for anti-MIF antibody therapy.


Assuntos
Anticorpos Monoclonais/química , Anticorpos Neutralizantes/química , Oxirredutases Intramoleculares/química , Fatores Inibidores da Migração de Macrófagos/química , Motivos de Aminoácidos , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/uso terapêutico , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/uso terapêutico , Dermatite de Contato/tratamento farmacológico , Dermatite de Contato/imunologia , Modelos Animais de Doenças , Humanos , Oxirredutases Intramoleculares/imunologia , Fatores Inibidores da Migração de Macrófagos/imunologia , Camundongos , Sepse/tratamento farmacológico , Sepse/imunologia
14.
Biologicals ; 39(1): 50-8, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21237672

RESUMO

Highly attenuated poxviruses are promising vectors for protective and therapeutic vaccines. These vectors do not replicate in human cells and can therefore be safely given even to immunocompromised recipients. They can accommodate very large inserts and provide strong stimulation of the immune system against the vectored antigen. Disadvantages include that very high numbers of infectious units are required per dose for full efficacy. Because they are difficult to produce, improved cellular substrates and processes are urgently needed to facilitate programs intended to reach a large number of vaccinees. We have developed a fully scalable and very efficient chemically-defined production process for modified vaccinia Ankara (MVA), canarypox (CNPV, strain ALVAC) and fowlpox viruses (FPV) based on a continuous cell line.


Assuntos
Vetores Genéticos/genética , Poxviridae/genética , Animais , Reatores Biológicos , Células CHO , Vírus da Varíola dos Canários/genética , Vírus da Varíola dos Canários/imunologia , Linhagem Celular , Proliferação de Células , Cricetinae , Cricetulus , Vírus da Varíola das Aves Domésticas/genética , Vírus da Varíola das Aves Domésticas/imunologia , Vetores Genéticos/imunologia , Humanos , Poxviridae/imunologia , Vacinas Atenuadas/imunologia , Vaccinia virus/genética , Vaccinia virus/imunologia , Vacinas Virais/imunologia , Replicação Viral/genética
15.
Cell Signal ; 18(5): 688-703, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16122907

RESUMO

Macrophage migration inhibitory factor (MIF) is a 12.5 kD polypeptide that serves as a critical regulator of cell functions such as gene expression, proliferation or apoptosis. However, the signal transduction pathways through which MIF takes part in cellular regulation are only incompletely understood. MIF leads to CD74-dependent "sustained" activation of ERK1/2 MAPK, but MIF's role in "transient" ERK activation and the involved upstream pathways are unknown. Here we report that the transient ERK pathway was markedly activated by MIF. This effect involved the phosphorylation and activation of Raf-1, MEK, ERK, and Elk-1. Of note, rapid and transient ERK phosphorylation by MIF was measurable in MIF-deficient cells, suggesting that MIF acted in a non-autocrine fashion. Applying the inhibitor genistein, a tyrosine kinase (TPK) activity was identified as a critical upstream signalling event in MIF-induced transient ERK signalling. Experiments using the Src kinase inhibitor PP2 indicated that the involved TPK was a Src-type tyrosine kinase. A role for an upstream Src kinase was proven by applying Src-deficient cells which did not exhibit transient ERK activation upon treatment with MIF, but in which MIF-induced ERK signalling could be restored by re-expressing Src. Intriguingly, JAB1/CSN5, a signalosome component, cellular binding protein of MIF and regulator of cell proliferation and survival, had a marked, yet dual, effect on MIF-induced ERK signalling. JAB1 overexpression inhibited sustained, but not transient, ERK phosphorylation. By contrast, JAB1-knock-down by siRNA revealed that minimum JAB1 levels were necessary for transient activation of ERK by MIF. In conclusion, MIF rapidly and transiently activates the ERK pathway, an effect that has not been recognized previously. This signalling pathway involves the upstream activation of a Src-type kinase and is co-regulated by the cellular MIF binding protein JAB1/CSN5. Our study thus has unravelled a novel MIF-driven signalling pathway and an intricate regulatory system involving extra- and possibly intracellular MIF, and which likely critically participates in controlling cell proliferation and survival.


Assuntos
MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Fatores Inibidores da Migração de Macrófagos/metabolismo , Peptídeo Hidrolases/metabolismo , Quinases da Família src/metabolismo , Animais , Comunicação Autócrina , Complexo do Signalossomo COP9 , Células Cultivadas , Ativação Enzimática , MAP Quinases Reguladas por Sinal Extracelular/genética , Fibroblastos/citologia , Fibroblastos/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , MAP Quinase Quinase 1/metabolismo , MAP Quinase Quinase 2/metabolismo , Camundongos , Camundongos Knockout , Peptídeo Hidrolases/genética , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Quinases da Família src/genética
16.
Antioxid Redox Signal ; 7(9-10): 1234-48, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16115028

RESUMO

Macrophage migration inhibitory factor (MIF) is an evolutionary conserved 12.5-kDa protein mediator with multiple functions in innate and acquired immunity. Upon leaderless secretion, MIF acts as a typical inflammatory cytokine, but there is no structural homology between MIF and any of the known cytokine protein families. Also, MIF is unique among cytokines in that it exhibits certain endocrine properties and has enzymatic activity. The catalytic thiol-protein oxidoreductase (TPOR) activity of MIF is mediated by a Cys-Ala-Leu-Cys active site between residues 57 and 60 that can undergo reversible intramolecular disulfide formation. Such a redox motif is typically found in TPORs of the thioredoxin (Trx) family of proteins. MIF seems to act as a disulfide reductase, and structure-function analyses of the redox site indicate that this activity is not only observed in vitro, but plays a role in cellular redox homeostasis, apoptosis inhibition, MIF-mediated monocyte/macrophage activation, and possibly the modulation of the activity of MIF-binding proteins. In this Forum review, the biochemical and biological evidence for a role of the TPOR activity for various MIF functions is summarized and discussed. In particular, the marked functional homologies with Trx proteins, the MIF redox/MHC II link, and recent attempts to discern the intra- versus extracellular roles of the MIF TPOR activity are dealt with.


Assuntos
Fatores Inibidores da Migração de Macrófagos/fisiologia , Oxirredução , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Antígenos de Diferenciação de Linfócitos B/metabolismo , Sítios de Ligação , Catálise , Citocinas/metabolismo , Dissulfetos , Antígenos de Histocompatibilidade Classe II/metabolismo , Humanos , Macrófagos/metabolismo , Camundongos , Modelos Biológicos , Monócitos/metabolismo , Oxirredutases/química , Peptídeos/química , Proteína Dissulfeto Redutase (Glutationa)/metabolismo , Homologia de Sequência de Aminoácidos , Relação Estrutura-Atividade , Tiorredoxinas/química
17.
FEBS Lett ; 579(7): 1693-701, 2005 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-15757663

RESUMO

Macrophage migration inhibitory factor (MIF) binds to c-Jun activation domain binding protein-1 (JAB1)/subunit 5 of COP9 signalosome (CSN5) and modulates cell signaling and the cell cycle through JAB1. The binding domain of JAB1 responsible for binding to MIF is unknown. We hypothesized that the conserved Mpr1p Pad1p N-terminal (MPN) domain of JAB1 may mediate binding to MIF. In fact, yeast two hybrid (YTH) and in vitro translation/coimmunoprecipitation (CoIP) analysis showed that a core MPN domain, which did not cover the functional JAB1/MPN/Mov34 metalloenzyme (JAMM) deneddylase sequence, binds to MIF comparable to full-length JAB1. YTH and pull-down analysis in conjunction with nanobead affinity matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry demonstrated that MIF(50-65) and MPN are sufficient to mediate MIF-JAB1 interaction, respectively. Finally, endogenous CoIP of MIF-CSN6 complexes from mammalian cells demonstrated that MPN is responsible for MIF-JAB1 binding in vivo, and, as CSN6 does not contain a functional JAMM motif, confirmed that the interaction does not require JAMM.


Assuntos
Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Fatores Inibidores da Migração de Macrófagos/metabolismo , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo , Motivos de Aminoácidos/genética , Sítios de Ligação , Complexo do Signalossomo COP9 , Linhagem Celular , Sequência Conservada/genética , Humanos , Imunoprecipitação , Peptídeos e Proteínas de Sinalização Intracelular , Peptídeo Hidrolases , Estrutura Secundária de Proteína/genética , Estrutura Terciária de Proteína , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Técnicas do Sistema de Duplo-Híbrido
18.
Circulation ; 109(3): 380-5, 2004 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-14691040

RESUMO

BACKGROUND: Macrophage migration inhibitory factor (MIF), a cytokine that controls cell-mediated inflammatory responses, is upregulated in atherogenesis; however, its functional contribution to lesion development has not been evaluated. METHODS AND RESULTS: We studied the role of MIF on neointima lesion formation after wire-induced injury of carotid arteries in apolipoprotein E-deficient (apoE(-/-)) mice. Immunohistochemistry revealed that MIF expression was detectable in endothelial cells before injury and upregulated in smooth muscle cells (SMCs) 24 hours after endothelial denudation. Three weeks after injury, MIF was predominantly found in endothelial cells and macrophage-derived foam cells. Neutralizing MIF with a monoclonal antibody resulted in a marked reduction of neointimal macrophages and inhibited transformation of macrophages into foam cells. Conversely, the content of SMCs and of collagen in the neointima were increased, amounting to a slight but not significant reduction in neointima and media size after 3 weeks of MIF monoclonal antibody treatment. Notably, serum levels of the cytokines IL-2, IL-4, IL-6, IL-10, and tumor necrosis factor were increased in MIF monoclonal antibody-treated mice. In vitro flow assays revealed that MIF pretreatment of aortic endothelium enhanced monocyte recruitment and that the monocyte arrest induced by oxidized LDL is mediated by endothelial MIF, as shown by monoclonal antibody inhibition. CONCLUSIONS: Inhibition of MIF resulted in a shift in the cellular composition of neointimal plaques toward a stabilized phenotype with reduced macrophage/foam cell content and increased SMC content. This might be attributable to a reduction of monocyte recruitment mediated by endothelial MIF.


Assuntos
Arteriosclerose/imunologia , Arteriosclerose/patologia , Fatores Inibidores da Migração de Macrófagos/antagonistas & inibidores , Animais , Apolipoproteínas E/genética , Doenças das Artérias Carótidas/etiologia , Doenças das Artérias Carótidas/imunologia , Doenças das Artérias Carótidas/patologia , Adesão Celular , Citocinas/sangue , Endotélio Vascular/citologia , Endotélio Vascular/efeitos dos fármacos , Feminino , Humanos , Fatores Inibidores da Migração de Macrófagos/farmacologia , Fatores Inibidores da Migração de Macrófagos/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Monócitos/imunologia , Túnica Íntima/química , Túnica Íntima/imunologia , Túnica Íntima/patologia
19.
J Immunol ; 170(6): 3337-47, 2003 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-12626594

RESUMO

The cytokine macrophage migration inhibitory factor (MIF) exhibits pro- and anti-inflammatory activities and regulates cell proliferation and survival. We investigated the effects of MIF on apoptosis. As MIF exhibits oxidoreductase activity and participates in regulating oxidative cell stress, we studied whether MIF could affect oxidative stress-induced apoptosis. We demonstrated that MIF exhibits antiapoptotic activity in various settings. MIF suppressed camptothecin-induced apoptosis in HeLa and Kym cells and HL-60 promyeloblasts. Both exogenous MIF and endogenous MIF, induced following overexpression through tetracycline (tet) gene induction, led to significant suppression of apoptosis. Apoptosis reduction by MIF was also observed in T cells. A role for MIF in redox stress-induced apoptosis was addressed by comparing the effects of rMIF with those of the oxidoreductase mutant C60SMIF. Endogenous overexpression of C60SMIF was similar to that of MIF, but C60SMIF did not suppress apoptosis. Exogenous rC60SMIF inhibited apoptosis. A role for MIF in oxidative stress-induced apoptosis was directly studied in HL-60 leukocytes and tet-regulated HeLa cells following thiol starvation or diamide treatment. MIF protected these cells from redox stress-induced apoptosis and enhanced cellular glutathione levels. As overexpressed C60SMIF did not protect tet-regulated HeLa cells from thiol starvation-induced apoptosis, it seems that the redox motif of MIF is important for this function. Finally, overexpression of MIF inhibited phosphorylation of endogenous c-Jun induced by thiol starvation, indicating that MIF-based suppression of apoptosis is mediated through modulation of c-Jun N-terminal kinase activity. Our findings show that MIF has potent antiapoptotic activities and suggest that MIF is a modulator of pro-oxidative stress-induced apoptosis.


Assuntos
Apoptose/imunologia , Regulação para Baixo/imunologia , Fatores Inibidores da Migração de Macrófagos/fisiologia , Estresse Oxidativo/imunologia , Apoptose/efeitos dos fármacos , Diamida/farmacologia , Regulação para Baixo/efeitos dos fármacos , Glutationa/metabolismo , Células HL-60 , Células HeLa , Humanos , Líquido Intracelular/enzimologia , Líquido Intracelular/imunologia , Líquido Intracelular/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno , Células Jurkat , Fatores Inibidores da Migração de Macrófagos/biossíntese , Fatores Inibidores da Migração de Macrófagos/genética , Fatores Inibidores da Migração de Macrófagos/farmacologia , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Oxirredução/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Proteínas Recombinantes/farmacologia , Compostos de Sulfidrila/farmacologia , Transfecção , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA