Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; : e2402991, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38874424

RESUMO

The widespread application of green hydrogen production technologies requires cost reduction of crucial elements. To achieve this, a viable pathway to reduce the iridium loading in proton exchange membrane water electrolysis (PEMWE) is explored. Herein, a scalable synthesis method based on a photodeposition process for a TiO2@IrOx core-shell catalyst with a reduced iridium content as low as 40 wt.% is presented. Using this synthesis method, titania support particles homogeneously coated with a thin iridium oxide shell of only 2.1 ± 0.4 nm are obtained. The catalyst exhibits not only high ex situ activity, but also decent stability compared to commercially available catalysts. Furthermore, the unique core-shell structure provides a threefold increased electrical powder conductivity compared to structures without the shell. In addition, the low iridium content facilitates the fabrication of sufficiently thick catalyst layers at decreased iridium loadings mitigating the impact of crack formation in the catalyst layer during PEMWE operation. It is demonstrated that the novel TiO2@IrOx core-shell catalyst clearly outperforms the commercial reference in single-cell tests with an iridium loading below 0.3 mgIr cm-2 exhibiting a superior iridium-specific power density of 17.9 kW gIr -1 compared to 10.4 kW gIr -1 for the commercial reference.

2.
Nat Commun ; 15(1): 3601, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38684654

RESUMO

Molybdenum disulfide (MoS2) is widely regarded as a competitive hydrogen evolution reaction (HER) catalyst to replace platinum in proton exchange membrane water electrolysers (PEMWEs). Despite the extensive knowledge of its HER activity, stability insights under HER operation are scarce. This is paramount to ensure long-term operation of Pt-free PEMWEs, and gain full understanding on the electrocatalytically-induced processes responsible for HER active site generation. The latter are highly dependent on the MoS2 allotropic phase, and still under debate. We rigorously assess these by simultaneously monitoring Mo and S dissolution products using a dedicated scanning flow cell coupled with downstream analytics (ICP-MS), besides an electrochemical mass spectrometry setup for volatile species analysis. We observe that MoS2 stability is allotrope-dependent: lamellar-like MoS2 is highly unstable under open circuit conditions, whereas cluster-like amorphous MoS3-x instability is induced by a severe S loss during the HER and undercoordinated Mo site generation. Guidelines to operate non-noble PEMWEs are therefore provided based on the stability number metrics, and an HER mechanism which accounts for Mo and S dissolution pathways is proposed.

3.
Artigo em Inglês | MEDLINE | ID: mdl-38676629

RESUMO

Gas crossover is critical in proton exchange membrane (PEM)-based electrochemical systems. Recently, single-layer graphene (SLG) has gained great research interest due to its outstanding properties as a barrier layer for small molecules like hydrogen. However, the applicability of SLG as a gas-blocking interlayer in PEMs has yet to be fully understood. In this work, two different approaches for transferring SLG from a copper or a polymeric substrate onto PEMs are compared regarding their application in low-temperature PEM fuel cells. The SLG is sandwiched between two Nafion XL membranes to form a stable composite membrane. The successful transfer is confirmed by Raman spectroscopy and in ex situ hydrogen permeation experiments in the dry state, where a reduction of 50% upon SLG incorporation is achieved. The SLG composite membranes are characterized by their performance and hydrogen-blocking ability in a fuel cell setup at typical operating conditions of 80 °C and with fully humidified gases. The performance of the fuel cell incorporating an SLG composite membrane is equal to that of the reference cell when avoiding the direct etching process from a copper substrate, as remnants from copper etching deteriorate the performance of the fuel cell. For both transfer processes, the hydrogen crossover reduction of SLG composite membranes is only 15-19% (1.5 barabs) in the operating fuel cell. Further, hydrogen pumping experiments suggest that the barrier function of SLG impairs the water transport through the membrane, which may affect water management in electrochemical applications. In summary, this work shows the successful transfer of SLG into a PEM and confirms the effective hydrogen-blocking capability of the SLG interlayer. However, the hydrogen-blocking ability is significantly reduced when running the cell at the typical humidified operating conditions of PEM fuel cells, which follows from a combination of reversible interlayer alteration upon humidification and irreversible defect formation upon PEM fuel cell operation.

4.
Opt Express ; 32(6): 9777-9789, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38571203

RESUMO

3D printed microoptics have become important tools for miniature endoscopy, novel CMOS-based on-chip sensors, OCT-fibers, among others. Until now, only image quality and spot diagrams were available for optical characterization. Here, we introduce Ronchi interferometry as ultracompact and quick quantitative analysis method for measuring the wavefront aberrations after propagating coherent light through the 3D printed miniature optics. We compare surface shapes by 3D confocal microscopy with optical characterizations by Ronchi interferograms. Phase retrieval gives us the transversal wave front aberration map, which indicates that the aberrations of our microlenses that have been printed with a Nanoscribe GT or Quantum X printer exhibit RMS wavefront aberrations as small as λ/20, Strehl ratios larger than 0.91, and near-diffraction limited modulation transfer functions. Our method will be crucial for future developments of 3D printed microoptics, as the method is ultracompact, ultra-stable, and very fast regarding measurement and evaluation. It could fit directly into a 3D printer and allows for in-situ measurements right after printing as well as fast iterations for improving the shape of the optical surface.

5.
J Mater Chem A Mater ; 11(41): 22347-22359, 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-38013811

RESUMO

We report the synthesis of a polystyrene-based anion exchange polymer bearing the cationic charge at a C6-spacer. The polymer is prepared by a functionalized monomer strategy. First, a copper halide catalyzed C-C coupling reaction between a styryl Grignard and 1,6-dibromohexane is applied, followed by quaternization with N-methylpiperidine and free radical polymerization. The novel polymer is blended with the polybenzimidazole O-PBI to yield mechanically stable blend membranes representing a new class of anion exchange membranes. In this regard, the ratio of the novel anion exchange polymer to O-PBI is varied to study the influence on water uptake and ionic conductivity. Blend membranes with IECs between 1.58 meq. OH- g-1 and 2.20 meq. OH- g-1 are prepared. The latter shows excellent performance in AEMWE, reaching 2.0 A cm-2 below 1.8 V in 1 M KOH at 70 °C, with a minor degradation rate from the start. The blend membranes show no conductivity loss after immersion in 1 M KOH at 85 °C for six weeks indicating high alkaline stability.

6.
Opt Lett ; 48(1): 131-134, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36563386

RESUMO

3D direct laser writing is a powerful and widely used tool to create complex micro-optics. The fabrication method offers two different writing modes. During the immersion mode, an immersion medium is applied between the objective and the substrate while the photoresist is exposed on its back side. Alternatively, when using the dip-in mode, the objective is in direct contact with the photoresist and the structure is fabricated on the objective facing side of the substrate. In this Letter, we demonstrate the combination of dip-in and photoresist immersion printing, by using the photoresist itself as immersion medium. This way, two parts of a doublet objective can be fabricated on the front and back sides of a substrate, using it as a spacer with a lateral registration below 1 µm and without the need of additional alignment. This approach also enables the alignment free combination of different photoresists on the back and front sides. We use this benefit by printing a black aperture on the back of the substrate, while the objective lens is printed on the front.

7.
Opt Express ; 30(10): 15913-15928, 2022 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-36221446

RESUMO

We perform extended numerical studies to maximize the overall photon coupling efficiency of fiber-coupled quantum dot single-photon sources emitting in the near-infrared and O-band and C-band. Using the finite element method, we optimize the photon extraction and fiber-coupling efficiency of quantum dot single-photon sources based on micromesas, microlenses, circular Bragg grating cavities and micropillars. The numerical simulations which consider the entire system consisting of the quantum dot source itself, the coupling lens, and the single-mode fiber, yield overall photon coupling efficiencies of up to 83%. Our work provides objectified comparability of different fiber-coupled single-photon sources and proposes optimized geometries for the realization of practical and highly efficient quantum dot single-photon sources.

8.
J Am Chem Soc ; 144(22): 9753-9763, 2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35609284

RESUMO

The electrochemical activity of modern Fe-N-C electrocatalysts in alkaline media is on par with that of platinum. For successful application in fuel cells (FCs), however, also high durability and longevity must be demonstrated. Currently, a limited understanding of degradation pathways, especially under operando conditions, hinders the design and synthesis of simultaneously active and stable Fe-N-C electrocatalysts. In this work, using a gas diffusion electrode half-cell coupled with inductively coupled plasma mass spectrometry setup, Fe dissolution is studied under conditions close to those in FCs, that is, with a porous catalyst layer (CL) and at current densities up to -125 mA·cm-2. Varying the rate of the oxygen reduction reaction (ORR), we show a remarkable linear correlation between the Faradaic charge passed through the electrode and the amount of Fe dissolved from the electrode. This finding is rationalized assuming that oxygen reduction and Fe dissolution reactions are interlinked, likely through a common intermediate formed during the Fe redox transitions in Fe species involved in the ORR, such as FeNxCy and Fe3C@N-C. Moreover, such a linear correlation allows the application of a simple metric─S-number─to report the material's stability. Hence, in the current work, a powerful tool for a more applied stability screening of different electrocatalysts is introduced, which allows on the one hand fast performance investigations under more realistic conditions, and on the other hand a more advanced mechanistic understanding of Fe-N-C degradation in CLs.

9.
Chem Rev ; 122(13): 11830-11895, 2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35442645

RESUMO

This Review provides an overview of the emerging concepts of catalysts, membranes, and membrane electrode assemblies (MEAs) for water electrolyzers with anion-exchange membranes (AEMs), also known as zero-gap alkaline water electrolyzers. Much of the recent progress is due to improvements in materials chemistry, MEA designs, and optimized operation conditions. Research on anion-exchange polymers (AEPs) has focused on the cationic head/backbone/side-chain structures and key properties such as ionic conductivity and alkaline stability. Several approaches, such as cross-linking, microphase, and organic/inorganic composites, have been proposed to improve the anion-exchange performance and the chemical and mechanical stability of AEMs. Numerous AEMs now exceed values of 0.1 S/cm (at 60-80 °C), although the stability specifically at temperatures exceeding 60 °C needs further enhancement. The oxygen evolution reaction (OER) is still a limiting factor. An analysis of thin-layer OER data suggests that NiFe-type catalysts have the highest activity. There is debate on the active-site mechanism of the NiFe catalysts, and their long-term stability needs to be understood. Addition of Co to NiFe increases the conductivity of these catalysts. The same analysis for the hydrogen evolution reaction (HER) shows carbon-supported Pt to be dominating, although PtNi alloys and clusters of Ni(OH)2 on Pt show competitive activities. Recent advances in forming and embedding well-dispersed Ru nanoparticles on functionalized high-surface-area carbon supports show promising HER activities. However, the stability of these catalysts under actual AEMWE operating conditions needs to be proven. The field is advancing rapidly but could benefit through the adaptation of new in situ techniques, standardized evaluation protocols for AEMWE conditions, and innovative catalyst-structure designs. Nevertheless, single AEM water electrolyzer cells have been operated for several thousand hours at temperatures and current densities as high as 60 °C and 1 A/cm2, respectively.

10.
Small ; 18(17): e2107032, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35229467

RESUMO

Multimodal microendoscopes enable co-located structural and molecular measurements in vivo, thus providing useful insights into the pathological changes associated with disease. However, different optical imaging modalities often have conflicting optical requirements for optimal lens design. For example, a high numerical aperture (NA) lens is needed to realize high-sensitivity fluorescence measurements. In contrast, optical coherence tomography (OCT) demands a low NA to achieve a large depth of focus. These competing requirements present a significant challenge in the design and fabrication of miniaturized imaging probes that are capable of supporting high-quality multiple modalities simultaneously. An optical design is demonstrated which uses two-photon 3D printing to create a miniaturized lens that is simultaneously optimized for these conflicting imaging modalities. The lens-in-lens design contains distinct but connected optical surfaces that separately address the needs of both fluorescence and OCT imaging within a lens of 330 µm diameter. This design shows an improvement in fluorescence sensitivity of >10x in contrast to more conventional fiber-optic design approaches. This lens-in-lens is then integrated into an intravascular catheter probe with a diameter of 520 µm. The first simultaneous intravascular OCT and fluorescence imaging of a mouse artery in vivo is reported.


Assuntos
Fótons , Tomografia de Coerência Óptica , Animais , Tecnologia de Fibra Óptica , Camundongos , Imagem Óptica , Impressão Tridimensional , Tomografia de Coerência Óptica/métodos
11.
Opt Express ; 30(2): 707-720, 2022 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-35209256

RESUMO

Simultaneous realization of ultra-large field of view (FOV), large lateral image size, and a small form factor is one of the challenges in imaging lens design and fabrication. All combined this yields an extensive flow of information while conserving ease of integration where space is limited. Here, we present concepts, correction methods and realizations towards freeform multi-aperture wide-angle cameras fabricated by femtosecond direct laser writing (fsDLW). The 3D printing process gives us the design freedom to create 180° × 360° cameras with a flat form factor in the micrometer range by splitting the FOV into several apertures. Highly tilted and decentered non-rotational lens shapes as well as catadioptric elements are used in the optical design to map the FOV onto a flat surface in a Scheimpflug manner. We present methods to measure and correct freeform surfaces with up to 180° surface normals by confocal measurements, and iterative fabrication via fsDLW. Finally, approaches for digital distortion correction and image stitching are demonstrated and two realizations of freeform multi-aperture wide-angle cameras are presented.

12.
ACS Appl Mater Interfaces ; 13(47): 56584-56596, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34784464

RESUMO

High-temperature proton-exchange membrane fuel cells (HT-PEMFCs) are mostly based on acid-doped membranes composed of polybenzimidazole (PBI). A severe drawback of acid-doped membranes is the deterioration of mechanical properties upon increasing acid-doping levels. Cross-linking of different polymers is a way to mitigate stability issues. In this study, a new ion-pair-coordinated membrane (IPM) system with quaternary ammonium groups for the application in HT-PEMFCs is introduced. PBI cross-linked with poly(vinylbenzyl chloride) and quaternized with three amines (DABCO, quinuclidine, and quinuclidinol) are manufactured and compared to the state-of-the-art commercial Dapazol PBI membrane ex situ as well as by evaluating their HT-PEMFC performance. The IPMs show reduced swelling and better mechanical properties upon doping, which enables a reduction in membrane thickness while maintaining a comparably low gas crossover and mechanical stability. The HT-PEMFC based on the best-performing IPM reaches up to 530 mW cm-2 at 180 °C under H2/air conditions at ambient pressure, while Dapazol is limited to less than 430 mW cm-2 at equal parameters. This new IPM system requires less acid doping than conventional PBI membranes while outperforming conventional PBI membranes, which renders these new membranes promising candidates for application in HT-PEMFCs.

13.
Polymers (Basel) ; 13(20)2021 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-34685226

RESUMO

As an alternative to common perfluorosulfonic acid-based polyelectrolytes, we present the synthesis and characterization of proton exchange membranes based on two different concepts: (i) Covalently bound multiblock-co-ionomers with a nanophase-separated structure exhibit tunable properties depending on hydrophilic and hydrophobic components' ratios. Here, the blocks were synthesized individually via step-growth polycondensation from either partially fluorinated or sulfonated aromatic monomers. (ii) Ionically crosslinked blend membranes of partially fluorinated polybenzimidazole and pyridine side-chain-modified polysulfones combine the hydrophilic component's high proton conductivities with high mechanical stability established by the hydrophobic components. In addition to the polymer synthesis, membrane preparation, and thorough characterization of the obtained materials, hydrogen permeability is determined using linear sweep voltammetry. Furthermore, initial in situ tests in a PEM electrolysis cell show promising cell performance, which can be increased by optimizing electrodes with regard to binders for the respective membrane material.

14.
Polymers (Basel) ; 13(11)2021 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-34198895

RESUMO

Diamond-like carbon coatings may decrease implant wear, therefore, they are helping to reduce aseptic loosening and increase service life of total knee arthroplasties (TKAs). This two-part study addresses the development of such coatings for ultrahigh molecular weight polyethylene (UHMWPE) tibial inlays as well as cobalt-chromium-molybdenum (CoCr) and titanium (Ti64) alloy femoral components. While the deposition of a pure (a-C:H) and tungsten-doped hydrogen-containing amorphous carbon coating (a-C:H:W) as well as the detailed characterization of mechanical and adhesion properties were the subject of Part I, the tribological behavior is studied in Part II. Pin-on-disk tests are performed under artificial synovial fluid lubrication. Numerical elastohydrodynamic lubrication modeling is used to show the representability of contact conditions for TKAs and to assess the influence of coatings on lubrication conditions. The wear behavior is characterized by means of light and laser scanning microscopy, Raman spectroscopy, scanning electron microscopy and particle analyses. Although the coating leads to an increase in friction due to the considerably higher roughness, especially the UHMWPE wear is significantly reduced up to a factor of 49% (CoCr) and 77% (Ti64). Thereby, the coating shows continuous wear and no sudden failure or spallation of larger wear particles. This demonstrated the great potential of amorphous carbon coatings for knee replacements.

15.
Polymers (Basel) ; 13(12)2021 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-34208302

RESUMO

Diamond-like carbon (DLC) coatings have the potential to reduce implant wear and thus to contribute to avoiding premature failure and increase service life of total knee replacements (TKAs). This two-part study addresses the development of such coatings for ultrahigh molecular weight polyethylene (UHMWPE) tibial inlays as well as cobalt-chromium-molybdenum (CoCr) and titanium (Ti64) alloy femoral components. While a detailed characterization of the tribological behavior is the subject of part II, part I focusses on the deposition of pure (a-C:H) and tungsten-doped hydrogen-containing amorphous carbon coatings (a-C:H:W) and the detailed characterization of their chemical, cytological, mechanical and adhesion behavior. The coatings are fabricated by physical vapor deposition (PVD) and display typical DLC morphology and composition, as verified by focused ion beam scanning electron microscopy and Raman spectroscopy. Their roughness is higher than that of the plain substrates. Initial screening with contact angle and surface tension as well as in vitro testing by indirect and direct application indicate favorable cytocompatibility. The DLC coatings feature excellent mechanical properties with a substantial enhancement of indentation hardness and elastic modulus ratios. The adhesion of the coatings as determined in modified scratch tests can be considered as sufficient for the use in TKAs.

16.
Opt Lett ; 46(10): 2485-2488, 2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-33988620

RESUMO

Three-dimensional (3D) direct laser writing is a powerful technology to create nano- and microscopic optical devices. While the design freedom of this technology offers the possibility to reduce different monochromatic aberrations, reducing chromatic aberrations is often neglected. In this Letter, we successfully demonstrate the combination of refractive and diffractive surfaces to create a refractive/diffractive achromat and show, to the best of our knowledge, the first refractive/diffractive apochromat by using DOEs and simultaneously combining two different photoresists, namely IP-S and IP-n162. These combinations drastically reduce chromatic aberrations in 3D printed micro-optics for the visible wavelength range. The optical properties, as well as the substantial reduction of chromatic aberrations, are characterized, and we outline the benefits of 3D direct laser written achromats and apochromats for micro-optics.

17.
Nat Commun ; 12(1): 2231, 2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33850142

RESUMO

Recent research indicates a severe discrepancy between oxygen evolution reaction catalysts dissolution in aqueous model systems and membrane electrode assemblies. This questions the relevance of the widespread aqueous testing for real world application. In this study, we aim to determine the processes responsible for the dissolution discrepancy. Experimental parameters known to diverge in both systems are individually tested for their influence on dissolution of an Ir-based catalyst. Ir dissolution is studied in an aqueous model system, a scanning flow cell coupled to an inductively coupled plasma mass spectrometer. Real dissolution rates of the Ir OER catalyst in membrane electrode assemblies are measured with a specifically developed, dedicated setup. Overestimated acidity in the anode catalyst layer and stabilization over time in real devices are proposed as main contributors to the dissolution discrepancy. The results shown here lead to clear guidelines for anode electrocatalyst testing parameters to resemble realistic electrolyzer operating conditions.

18.
Angew Chem Int Ed Engl ; 60(16): 8882-8888, 2021 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-33410273

RESUMO

Pt dissolution has already been intensively studied in aqueous model systems and many mechanistic insights have been gained. Nevertheless, transfer of new knowledge to real-world fuel cell systems is still a significant challenge. To close this gap, we present a novel in situ method combining a gas diffusion electrode (GDE) half-cell with inductively coupled plasma mass spectrometry (ICP-MS). With this setup, Pt dissolution in realistic catalyst layers and the transport of dissolved Pt species through Nafion membranes were evaluated directly. We observed that 1) specific Pt dissolution increased significantly with decreasing Pt loading, 2) in comparison to experiments on aqueous model systems with flow cells, the measured dissolution in GDE experiments was considerably lower, and 3) by adding a membrane onto the catalyst layer, Pt dissolution was reduced even further. All these phenomena are attributed to the varying mass transport conditions of dissolved Pt species, influencing re-deposition and equilibrium potential.

19.
RSC Adv ; 11(50): 31477-31486, 2021 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-35496865

RESUMO

Water management is a very important issue in low temperature fuel cells such as proton exchange membrane fuel cells (PEMFCs) or anion exchange membrane fuel cells. Within bipolar interface fuel cells, water management inhibits an even more critical role. The earlier work on bipolar interface fuel cells (BPIFCs), employing Fe-N/C on the cathode side for the oxygen reduction reaction (ORR) in an alkaline environment, demonstrated increased stability of the catalyst compared to the acidic environment of the conventional PEMFCs. However, for the BPIFCs, severe mass transport limitations (MTL) dramatically reduced the power output of the cell within a few hours. In the present work water transport processes are identified as the source of the observed MTL, after evaluating the performance data of BPIFCs, where the amount of directly deposited anion exchange membrane (AEM) material was varied. It can be seen that the BPIFCs with lower AEM content show an earlier onset of MTL than the cells prepared with higher AEM content. It is shown that the AEM can be used as a tool to regulate the influx rate of product water from the bipolar interface into the CCL and that flooding of the porous layers is identified as the main source of the observed MTL. This work paves the way for further development of BPIFCs using Fe-N/C at the cathode electrode, as novel cell design strategies can now focus exclusively on avoiding flooding phenomena.

20.
Small ; 17(9): e1903854, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31532893

RESUMO

Over the past few years, great attention has been given to nonaqueous lithium-air batteries owing to their ultrahigh theoretical energy density when compared with other energy storage systems. Most of the research interest, however, is dedicated to batteries operating in pure or dry oxygen atmospheres, while Li-air batteries that operate in ambient air still face big challenges. The biggest challenges are H2 O and CO2 that exist in ambient air, which can not only form byproducts with discharge products (Li2 O2 ), but also react with the electrolyte and the Li anode. To this end, recent progress in understanding the chemical and electrochemical reactions of Li-air batteries in ambient air is critical for the development and application of true Li-air batteries. Oxygen-selective membranes, multifunctional catalysts, and electrolyte alternatives for ambient air operational Li-air batteries are presented and discussed comprehensively. In addition, separator modification and Li anode protection are covered. Furthermore, the challenges and directions for the future development of Li-air batteries are presented.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA