Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
Cell Stem Cell ; 24(1): 166-182.e13, 2019 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-30581079

RESUMO

We report the direct reprogramming of both adult human fibroblasts and blood cells into induced neural plate border stem cells (iNBSCs) by ectopic expression of four neural transcription factors. Self-renewing, clonal iNBSCs can be robustly expanded in defined media while retaining multilineage differentiation potential. They generate functional cell types of neural crest and CNS lineages and could be used to model a human pain syndrome via gene editing of SCN9A in iNBSCs. NBSCs can also be derived from human pluripotent stem cells and share functional and molecular features with NBSCs isolated from embryonic day 8.5 (E8.5) mouse neural folds. Single-cell RNA sequencing identified the anterior hindbrain as the origin of mouse NBSCs, with human iNBSCs sharing a similar regional identity. In summary, we identify embryonic NBSCs and report their generation by direct reprogramming in human, which may facilitate insights into neural development and provide a neural stem cell source for applications in regenerative medicine.


Assuntos
Diferenciação Celular , Reprogramação Celular , Células-Tronco Embrionárias/citologia , Placa Neural/citologia , Células-Tronco Neurais/citologia , Células-Tronco Pluripotentes/citologia , Adulto , Animais , Células Sanguíneas , Células Cultivadas , Células-Tronco Embrionárias/metabolismo , Humanos , Masculino , Camundongos , Placa Neural/metabolismo , Células-Tronco Neurais/metabolismo , Neurogênese , Células-Tronco Pluripotentes/metabolismo , Adulto Jovem
3.
Cell ; 164(4): 668-80, 2016 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-26871632

RESUMO

Mouse embryonic stem cells (ESCs) are maintained in a naive ground state of pluripotency in the presence of MEK and GSK3 inhibitors. Here, we show that ground-state ESCs express low Myc levels. Deletion of both c-myc and N-myc (dKO) or pharmacological inhibition of Myc activity strongly decreases transcription, splicing, and protein synthesis, leading to proliferation arrest. This process is reversible and occurs without affecting pluripotency, suggesting that Myc-depleted stem cells enter a state of dormancy similar to embryonic diapause. Indeed, c-Myc is depleted in diapaused blastocysts, and the differential expression signatures of dKO ESCs and diapaused epiblasts are remarkably similar. Following Myc inhibition, pre-implantation blastocysts enter biosynthetic dormancy but can progress through their normal developmental program after transfer into pseudo-pregnant recipients. Our study shows that Myc controls the biosynthetic machinery of stem cells without affecting their potency, thus regulating their entry and exit from the dormant state.


Assuntos
Células-Tronco Embrionárias/citologia , Genes myc , Proteínas Proto-Oncogênicas c-myc/genética , Animais , Blastocisto/metabolismo , Proliferação de Células , Embrião de Mamíferos/citologia , Embrião de Mamíferos/metabolismo , Células-Tronco Embrionárias/metabolismo , Feminino , Técnicas de Inativação de Genes , Masculino , Camundongos , Camundongos Endogâmicos C57BL
4.
J Cell Sci ; 129(5): 912-20, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26795560

RESUMO

A comprehensive analysis of the molecular network of cellular factors establishing and maintaining pluripotency as well as self renewal of pluripotent stem cells is key for further progress in understanding basic stem cell biology. Nanog is necessary for the natural induction of pluripotency in early mammalian development but dispensable for both its maintenance and its artificial induction. To gain further insight into the molecular activity of Nanog, we analyzed the outcomes of Nanog gain-of-function in various cell models employing a recently developed biologically active recombinant cell-permeant protein, Nanog-TAT. We found that Nanog enhances the proliferation of both NIH 3T3 and primary fibroblast cells. Nanog transduction into primary fibroblasts results in suppression of senescence-associated ß-galactosidase activity. Investigation of cell cycle factors revealed that transient activation of Nanog correlates with consistent downregulation of the cell cycle inhibitor p27(KIP1) (also known as CDKN1B). By performing chromatin immunoprecipitation analysis, we confirmed bona fide Nanog-binding sites upstream of the p27(KIP1) gene, establishing a direct link between physical occupancy and functional regulation. Our data demonstrates that Nanog enhances proliferation of fibroblasts through transcriptional regulation of cell cycle inhibitor p27 gene.


Assuntos
Senescência Celular , Inibidor de Quinase Dependente de Ciclina p27/genética , Proteína Homeobox Nanog/fisiologia , Animais , Sítios de Ligação , Adesão Celular , Proliferação de Células , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Regulação para Baixo , Fibroblastos/fisiologia , Expressão Gênica , Inativação Gênica , Loci Gênicos , Humanos , Camundongos , Células NIH 3T3
5.
J Mol Biol ; 428(7): 1476-83, 2016 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-26555748

RESUMO

Direct cell conversion developed into an important paradigm for generating cells with enhanced differentiation capability. We combined a transcription-factor-based cell fate conversion strategy with the use of pharmacological compounds to derive early neuroepithelial progenitor cells from developmentally more restricted radial glia-type neural stem cells. By combining the small molecules CHIR99021, Tranylcypromine, SB431542 and valproic acid with viral transduction of the transcription factor c-Myc and the POU domain transcription factor Brn2, we dedifferentiated radial glia-type neural stem cells into an early neuroepithelial progenitor cell state within 6 days. Reverse transcription PCR analyses showed a rapid down-regulation of the radial glia markers Olig2 and Vimentin during conversion, whereas the neuroepithelial markers Dach1 and Sox1 were fastly up-regulated. Furthermore, a switch from N-Cadherin to E-Cadherin indicates a mesenchymal-to-epithelial transition. The differentiation of cells converted by Brn2/c-Myc yielded smooth muscle actin- and Peripherin-positive cells in addition to the neuronal marker TUJ1 and cells that are positive for the glial marker GFAP. This differentiation potential suggests that the applied reprogramming strategy induced an early neuroepithelial cell population, which might resemble cells of the neural border or even more primitive neuroepithelial cells.


Assuntos
Diferenciação Celular , Reprogramação Celular , Células-Tronco Embrionárias/citologia , Proteínas de Homeodomínio/metabolismo , Células-Tronco Neurais/citologia , Neuroglia/citologia , Fatores do Domínio POU/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Animais , Western Blotting , Proliferação de Células , Células Cultivadas , Células-Tronco Embrionárias/fisiologia , Proteínas de Homeodomínio/genética , Técnicas Imunoenzimáticas , Camundongos , Células-Tronco Neurais/fisiologia , Neuroglia/fisiologia , Fatores do Domínio POU/genética , Proteínas Proto-Oncogênicas c-myc/genética , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa
6.
PLoS One ; 7(6): e39239, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22737231

RESUMO

MicroRNAs play a pivotal role in cellular maintenance, proliferation, and differentiation. They have also been implicated to play a key role in disease pathogenesis, and more recently, cellular reprogramming. Certain microRNA clusters can enhance or even directly induce reprogramming, while repressing key proteins involved in microRNA processing decreases reprogramming efficiency. Although microRNAs clearly play important roles in cellular reprogramming, it remains unknown whether microRNAs are absolutely necessary. We endeavored to answer this fundamental question by attempting to reprogram Dicer-null mouse embryonic fibroblasts (MEFs) that lack almost all functional microRNAs using a defined set of transcription factors. Transduction of reprogramming factors using either lentiviral or piggyBac transposon vector into two, independently derived lines of Dicer-null MEFs failed to produce cells resembling embryonic stem cells (ESCs). However, expression of human Dicer in the Dicer-null MEFs restored their reprogramming potential. Our study demonstrates for the first time that microRNAs are indispensable for dedifferentiation reprogramming.


Assuntos
Reprogramação Celular , RNA Helicases DEAD-box/genética , Fibroblastos/citologia , Regulação da Expressão Gênica , MicroRNAs/genética , Ribonuclease III/genética , Animais , Técnicas de Cultura de Células , Diferenciação Celular/genética , Proliferação de Células , Células Cultivadas , RNA Helicases DEAD-box/fisiologia , Células-Tronco Embrionárias/citologia , Fibroblastos/metabolismo , Vetores Genéticos , Humanos , Camundongos , Camundongos Knockout , Camundongos Transgênicos , MicroRNAs/metabolismo , Ribonuclease III/fisiologia , Células-Tronco
7.
Biotechnol Appl Biochem ; 59(2): 77-87, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23586788

RESUMO

The ability of pluripotent stem cells to differentiate into specialized cells of all three germ layers, their capability to self-renew, and their amenability to genetic modification provide fascinating prospects for the generation of cell lines for biomedical applications. Therefore, stem cells must increasingly suffice in terms of industrial standards, and automation of critical or time-consuming steps becomes a fundamental prerequisite for their routine application. Cumbersome manual picking of individual stem cell colonies still represents the most frequently used method for passaging or derivation of clonal stem cell lines. Here, we explore an automated harvesting system (CellCelector™) for detection, isolation, and propagation of human embryonic stem cells (hESCs) and murine induced pluripotent stem cells (iPSCs). Automatically transferred hESC colonies maintained their specific biological characteristics even after repeated passaging. We also selected and harvested primary iPSCs derived from mouse embryonic fibroblasts expressing the green fluorescent protein (GFP) under the control of the Oct4 promotor using either morphological criteria or GFP fluorescence. About 80% of the selected and harvested primary iPSC colonies gave rise to homogenously GFP-expressing iPSC lines. To validate the iPSC lines, we analyzed the expression of pluripotency-associated markers and multi-germ layer differentiation potential in vitro. Our data indicate that the CellCelector™ technology enables efficient identification and isolation of pluripotent stem cell colonies at the phase contrast or fluorescence level.


Assuntos
Automação Laboratorial/instrumentação , Células-Tronco Embrionárias/citologia , Células-Tronco Pluripotentes Induzidas/citologia , Animais , Biomarcadores/análise , Biomarcadores/química , Técnicas de Cultura de Células , Processos de Crescimento Celular/fisiologia , Linhagem Celular , Separação Celular/instrumentação , Separação Celular/métodos , Células-Tronco Embrionárias/química , Humanos , Células-Tronco Pluripotentes Induzidas/química , Camundongos , Reprodutibilidade dos Testes , Coleta de Tecidos e Órgãos/instrumentação , Coleta de Tecidos e Órgãos/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA