Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
Environ Res ; 212(Pt E): 113636, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35679907

RESUMO

Antibiotics are essential medications for human and animal health, as they are used to battle urinary infections and bacterial diseases. Therefore, the rapid determination of antibiotic drugs in biological samples is necessary to address the current clinical challenge. Here, we developed a heterojunction ternary composite of BiOCl/BiVO4 nanosheets enriched with graphene oxide (BiOCl/BiVO4@GO) for accurate and minimal-level detection of an antihistamine (promethazine hydrochloride, PMZ) in urine samples. The BiOCl/BiVO4 nanosheets were prepared by a wet chemical approach using a deep eutectic green solvent. The spectroscopic and analytical methods verified the formation and interaction of the BiOCl/BiVO4@GO composite. Our results showed that the thoroughly exfoliated BiOCl/BiVO4@GO composite retained good electrical conductivity and fast charge transfer toward the electrode-electrolyte interface in neutral aqueous media. In addition, the experimental conditions were accurately optimized, and the BiOCl/BiVO4@GO composite showed excellent electrocatalytic activity toward the oxidation of PMZ. Indeed, the BiOCl/BiVO4@GO composite demonstrated a good linear response range (0.01-124.7 µM) and a detection level of 3.3 nM with a sensitivity of 1.586 µA µM-1 cm-2. In addition, the BiOCl/BiVO4@GO composite had excellent storage stability, good reproducibility, and reliable selectivity. Finally, the BiOCl/BiVO4@GO displayed a desirable recovery level of PMZ in urine samples for real-time monitoring.


Assuntos
Grafite , Antibacterianos , Eletrodos , Grafite/química , Antagonistas dos Receptores Histamínicos , Reprodutibilidade dos Testes
3.
Talanta ; 238(Pt 1): 123028, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34857347

RESUMO

In this study, we developed a portable electrochemical sensor for realizing the pesticide residue in biological, environmental, and vegetable samples. A lower concentration of carbendazim pesticide (CBZ) was electrochemically exposed by newly developed gadolinium oxide/functionalized carbon nanosphere modified glassy carbon electrode (Gd2O3/f-CNS/GCE). The Gd2O3/f-CNS composite was prepared by two-pot ultrasonic-assisted co-precipitation method and characterized by various physicochemical analytical techniques. In addition, the electrocatalytic activity of the composite was investigated by cyclic voltammetry (CV) towards the detection of CBZ. Besides, the Gd2O3/f-CNS/GCE exhibited excellent electrocatalytic capability and sensitivity towards the oxidation of CBZ due to its high electrochemical active surface area, good conductivity, and fast electron transfer ability. A wide linear range of CBZ (0.5-552 µM) was attained with a low level of detection (LOD) of 0.009 µM L-1 and exceptional stability of 93.41%. The proposed sensor exemplifies practical feasibility in blood serum, water, and vegetable samples with an remarkable recovery range of 96.27-99.44% and primary current response of ∼91% after 15 days.


Assuntos
Nanosferas , Praguicidas , Carbono , Técnicas Eletroquímicas , Eletrodos , Gadolínio , Água
4.
Nanomaterials (Basel) ; 11(4)2021 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-33923729

RESUMO

A novel design and synthesis methodology is the most important consideration in the development of a superior electrocatalyst for improving the kinetics of oxygen electrode reactions, such as the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER) in Li-O2 battery application. Herein, we demonstrate a glycine-assisted hydrothermal and probe sonication method for the synthesis of a mesoporous spherical La0.8Ce0.2Fe0.5Mn0.5O3 perovskite particle and embedded graphene nanosheet (LCFM(8255)-gly/GNS) composite and evaluate its bifunctional ORR/OER kinetics in Li-O2 battery application. The physicochemical characterization confirms that the as-formed LCFM(8255)-gly perovskite catalyst has a highly crystalline structure and mesoporous morphology with a large specific surface area. The LCFM(8255)-gly/GNS composite hybrid structure exhibits an improved onset potential and high current density toward ORR/OER in both aqueous and non-aqueous electrolytes. The LCFM(8255)-gly/GNS composite cathode (ca. 8475 mAh g-1) delivers a higher discharge capacity than the La0.5Ce0.5Fe0.5Mn0.5O3-gly/GNS cathode (ca. 5796 mAh g-1) in a Li-O2 battery at a current density of 100 mA g-1. Our results revealed that the composite's high electrochemical activity comes from the synergism of highly abundant oxygen vacancies and redox-active sites due to the Ce and Fe dopant in LaMnO3 and the excellent charge transfer characteristics of the graphene materials. The as-developed cathode catalyst performed appreciable cycle stability up to 55 cycles at a limited capacity of 1000 mAh g-1 based on conventional glass fiber separators.

5.
Nat Commun ; 12(1): 1452, 2021 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-33664259

RESUMO

Anode-free lithium metal batteries are the most promising candidate to outperform lithium metal batteries due to higher energy density and reduced safety hazards with the absence of metallic lithium anode during initial cell fabrication. In general, researchers report capacity retention, reversible capacity, or rate capability of the cells to study the electrochemical performance of anode-free lithium metal batteries. However, evaluating the behavior of batteries from limited aspects may easily overlook other information hidden deep inside the meretricious results or even lead to misguided data interpretation. In this work, we present an integrated protocol combining different types of cell configuration to determine various sources of irreversible coulombic efficiency in anode-free lithium metal cells. The decrypted information from the protocol provides an insightful understanding of the behaviors of LMBs and AFLMBs, which promotes their development for practical applications.

6.
ACS Nano ; 14(2): 1770-1782, 2020 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-32003975

RESUMO

Herein, we report hierarchical 3D NiMn-layered double hydroxide (NiMn-LDHs) shells grown on conductive silver nanowire (Ag NWs) cores as efficient, low-cost, and durable oxygen reduction reaction (ORR)/oxygen evolution reaction (OER) bifunctional electrocatalysts for metal-air batteries. The hierarchical 3D architectured Ag NW@NiMn-LDH catalysts exhibit superb OER/ORR activities in alkaline conditions. The outstanding bifunctional activities of Ag NW@NiMn-LDHs are essentially attributed to increasing both site activity and site populations. The synergistic contributions from the hierarchical 3D open-pore structure of the LDH shells, improved electrical conductivity, and small thickness of the LDHs shells are associated with more accessible site populations. Moreover, the charge transfer between Ag cores and metals of LDH shells and the formation of defective and distorted sites (less coordinated Ni and Mn sites) strongly enhance the site activity. Thus, Ag NW@NiMn-LDH hybrids exhibit a 0.75 V overvoltage difference between ORR and OER with excellent durability for 30 h, demonstrating the distinguished bifunctional electrocatalyst reported to date. Interestingly, the homemade rechargeable Zn-air battery using the hybrid Ag NW@NiMn-LDHs (1:2) catalyst as the air electrode exhibits a charge-discharge voltage gap of ∼0.77 V at 10 mA cm-2 and shows excellent cycling stability. Thus, the concept of the hierarchical 3D architecture of Ag NW@NiMn-LDHs considerably advances the practice of LDHs toward metal-air batteries and oxygen electrocatalysts.

7.
J Am Chem Soc ; 141(46): 18612-18623, 2019 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-31642662

RESUMO

Understanding the mechanism of Li nucleation and growth is essential for providing long cycle life and safe lithium ion batteries or lithium metal batteries. However, no quantitative report on Li metal deposition is available, to the best of our knowledge. We propose a model for quantitatively understanding the Li nucleation and growth mechanism associated with the solid-electrolyte interphase (SEI) formation, which we name the Li-SEI model. The current transients at various overpotentials initiate the nucleation and growth of Li metal on bare Cu foil. The Li-SEI model considering a three-dimensional diffusion-controlled instantaneous process (J3D-DC) with the simultaneous reduction of electrolyte decomposition (JSEI) due to the SEI fracture is employed for investigating the Li nucleation and growth mechanism. The individual contributions of experimental and theoretical transient states, i.e., the fundamental kinetic values of diffusion coefficient (D), rate of nucleation (N0), and rate constant of electrolyte decomposition (kSEI), can be determined from the Li-SEI model. Interestingly, JSEI increases with time, indicating that the current contributing from the electrolyte decomposition increases with time due to the SEI fracture upon Li deposition. Meanwhile, the kSEI increases with overpotential, indicating the SEI fracture is more serious at higher overpotential or higher growth rate. The kSEI is smaller in the electrolyte with fluoroethylene carbonate (FEC) additive, indicating that FEC additive can significantly suppress the SEI fracture during Li metal deposition. This proposed model opens a new way to quantitatively understand the Li nucleation and growth mechanism and electrolyte decomposition on various substrates or in different electrolytes.

8.
ACS Appl Mater Interfaces ; 11(35): 31962-31971, 2019 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-31393118

RESUMO

The combined effect of concentrated electrolyte and cycling protocol on the cyclic performance of the anode-free battery (AFB) is evaluated systematically. In situ deposition of Li in the AFB configuration in the presence of a concentrated electrolyte containing fluorine-donating salt and resting the deposit enables the formation of stable and uniform SEI. The SEI intercepts the undesirable side reaction between the deposit and solvent in the electrolyte and reduces electrolyte and Li consumption during cycling. The synergy between the laboratory-prepared concentrated 3 M LiFSI in the ester-based electrolyte and our resting protocol significantly enhanced cyclic performances of AFBs in comparison to the commercial carbonate-based dilute electrolyte, 1 M LiPF6. Benefitting from the combined effect, Cu∥LiFePO4 cells delivered excellent cyclic performance at 0.5 mA/cm2 with an average CE of up to 98.78%, retaining a reasonable discharge capacity after 100 cycles. Furthermore, the AFB can also be cycled at a high rate up to 1.0 mA/cm2 with a high average CE and retaining the encouraging discharge capacity after 100 cycles. The fast cycling and stable performance of these cells are attributed to the formation of robust, flexible, and tough F-rich conductive SEI on the surface of the in situ-deposited Li by benefiting from the combined effect of the resting protocol and the concentrated electrolyte. A condescending understanding of the mechanism of SEI formation and material choice could facilitate the development of AFBs as future advanced energy storage devices.

9.
ACS Appl Mater Interfaces ; 11(10): 9955-9963, 2019 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-30789250

RESUMO

Currently, concentrated electrolyte solutions are attracting special attention because of their unique characteristics such as unusually improved oxidative stability on both the cathode and anode sides, the absence of free solvent, the presence of more anion content, and the improved availability of Li+ ions. Most of the concentrated electrolytes reported are lithium bis(fluorosulfonyl)imide (LiFSI) salt with ether-based solvents because of the high solubility of salts in ether-based solvents. However, their poor anti-oxidation capability hindered their application especially with high potential cathode materials (>4.0 V). In addition, the salt is very costly, so it is not feasible from the cost analysis point of view. Therefore, here we report a locally concentrated electrolyte, 2 M LiPF6, in ethylene carbonate/diethyl carbonate (1:1 v/v ratio) diluted with fluoroethylene carbonate (FEC), which is stable within a wide potential range (2.5-4.5 V). It shows significant improvement in cycling stability of lithium with an average Coulombic efficiency (ACE) of ∼98% and small voltage hysteresis (∼30 mV) with a current density of 0.2 mA/cm2 for over 1066 h in Li||Cu cells. Furthermore, we ascertained the compatibility of the electrolyte for anode-free Li-metal batteries (AFLMBs) using Cu||LiNi1/3Mn1/3Co1/3O2 (NMC, ∼2 mA h/cm2) with a current density of 0.2 mA/cm2. It shows stable cyclic performance with ACE of 97.8 and 40% retention capacity at the 50th cycle, which is the best result reported for carbonate-based solvents with AFLMBs. However, the commercial carbonate-based electrolyte has <90% ACE and even cannot proceed more than 15 cycles with retention capacity >40%. The enhanced cycle life and well retained in capacity of the locally concentrated electrolyte is mainly because of the synergetic effect of FEC as the diluent to increase the ionic conductivity and form stable anion-derived solid electrolyte interphase. The locally concentrated electrolyte also shows high robustness to the effect of upper limit cutoff voltage.

10.
J Hazard Mater ; 367: 647-657, 2019 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-30654282

RESUMO

Heterostructured nanomaterials can paid more significant attention in environmental safety for the detection and degradation/removal of hazardous toxic chemicals over a decay. Here, we report the preparation of hierarchically nanostructured shuriken like bismuth vanadate (BiVO4) as a bifunctional catalyst for photocatalytic degradation and electrochemical detection of highly toxic hexavalent chromium (Cr(VI)) using the green deep eutectic solvent reline, which allows morphology control in one of the less energy-intensive routes. The SEM results showed a good dispersion of BiVO4 catalyst and the HR-TEM revealed an average particle size of ca. 5-10 nm. As a result, the BiVO4 exhibited good photocatalytic activity under UV-light about 95% reduction of Cr(VI) to Cr(III) was observed in 160 min. The recyclability of BiVO4 catalyst exhibited an appreciable reusability and stability of the catalyst towards the photocatalytic reduction of Cr(VI). Also, the BiVO4-modified screen printed carbon electrode (BiVO4/SPCE) displayed an excellent electrochemical performance towards the electrochemical detection of Cr(VI). Besides, the BiVO4/SPCE demonstrated tremendous electrocatalytic activity, lower linear range (0.01-264.5 µM), detection limit (0.0035 µM) and good storage stability towards the detection of Cr(VI). Importantly, the BiVO4 modified electrode was also found to be a good recovery in water samples for practical applications.

11.
Mikrochim Acta ; 185(8): 395, 2018 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-30062660

RESUMO

Nitrogen-doped multiwalled carbon nanotubes modified with nickel nanoparticles (Ni/N-MWCNT) were prepared by a thermal reduction process starting from urea and Ni(II) salt in an inert atmosphere. The nanocomposite was deposited on a screen printed electrode and characterized by X-ray diffraction, scanning and transmission electron microscopy, nitrogen adsorption, X-ray photoelectron spectroscopy, and thermogravimetric analyses. The performance of the composite was investigated by cyclic voltammetry, differential pulse voltammetry and chronoamperometry. The numerous active metal sites with fast electron transfer properties result in enhanced electrocatalytic activity towards the individual and simultaneous detection of catechol (CC) and hydroquinone (HQ), best at 0.21 V for CC and 0.11 V for HQ (vs. Ag/AgCl). For both targets the detection limit (S/N of 3) was 9 nM (CC) and 11 nM (HQ), and the Ni/N-MWCNT-electrode showed linear response from 0.1-300 µM CC, and 0.3-300 µM HQ. The electrode is selective over many potentially interfering ions. It was applied to the analysis of spiked water samples and gave satisfactory recoveries. It also is sensitive for CC (5.396 µA·µM-1 cm-2) and HQ (5.1577 µA·µM-1 cm-2), highly active, durable, acceptably repeatable and highly reproducible. Graphical abstract Voltammetric determination of catechol and hydroquinone using nitrogen-doped multiwalled carbon nanotubes modified with nickel nanoparticles.

12.
J Colloid Interface Sci ; 509: 153-162, 2018 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-28898735

RESUMO

In this work, we describe a simple approach for the preparation of cobalt sulfide/reduced graphene oxide (CoS/RGO) nanohybrids via single step electrochemical method. The electrocatalytic activity of the CoS/RGO nanohybrids was evaluated towards the detection hydrogen peroxide (H2O2). The physiochemical properties of the prepared composite was characterized by means of field emission scanning electron microscopy, high-resolution transmission electron microscopy, X-ray photoelectron spectroscopy, Raman spectroscopy and X-ray powder diffraction patterns. The CoS/RGO modified electrode showed superior electrocatalytic activity towards the detection of H2O2. The amperometric (i-t) studies revealed that the CoS/RGO performed well by attaining a wide linear response range of H2O2 from 0.1 to 2542.4µM with a lower detection limit 42nM and the sensitivity of 2.519µAµM-1cm-2. Meanwhile, the CoS/RGO nanohybrids exhibited good selectivity, rapid and stable response towards H2O2. The practical applicability of the sensor was successfully evaluated in human serum and urine samples with satisfactory recoveries.


Assuntos
Cobalto/química , Técnicas Eletroquímicas/métodos , Grafite/química , Peróxido de Hidrogênio/análise , Catálise , Eletrodos , Humanos , Sensibilidade e Especificidade , Propriedades de Superfície
13.
Sens Actuators B Chem ; 259: 339-346, 2018 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32288250

RESUMO

A highly sensitive and selective fluorogenic sensing of L-Cysteine (L-Cys) was implemented based on gelatin stabilized gold nanoparticles decorated reduced graphene oxide (rGO/Au) nanohybrid. The rGO/Au nanohybrid was prepared by the one-pot hydrothermal method and well characterized by different physiochemical techniques. The nanohybrid exhibits a weak fluorescence of rGO due to the energy transfer from the rGO to Au NPs. The rGO/Au nanohybrid shows enhanced fluorescence activity due to the restoration of quenched fluorescence of rGO/Au nanohybrid in presence of L-Cys. The rGO/Au nanohybrid exhibits much lower detection limit of 0.51 nM for L-Cys with higher selectivity. The fluorescence sensing mechanism arose from the fluorescence recovery due to the stronger interaction between Au NPs and L-Cys, and consequently, the energy transfer was prevented between rGO and Au NPs. The practicability of rGO/Au sensor was implemented by invitro bioimaging measurements in Colo-205 (colorectal adenocarcinoma) and MKN-45 (gastric carcinoma) cancer live cells with excellent biocompatibility.

14.
ACS Appl Mater Interfaces ; 9(37): 31794-31805, 2017 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-28850211

RESUMO

The syntheses of highly stable ruthenium nanoparticles supported on tungsten oxides (Ru-WO3) bifunctional nanocomposites by means of a facial microwave-assisted route are reported. The physicochemical properties of these Ru-WO3 catalysts with varied Ru contents were characterized by a variety of analytical and spectroscopic methods such as XRD, SEM/TEM, EDX, XPS, N2 physisorption, TGA, UV-vis, and FT-IR. The Ru-WO3 nanocomposite catalysts so prepared were utilized for electrocatalytic of hydrazine (N2H4) and catalytic oxidation of diphenyl sulfide (DPS). The Ru-WO3-modified electrodes were found to show extraordinary electrochemical performances for sensitive and selective detection of N2H4 with a desirable wide linear range of 0.7-709.2 µM and a detection limit and sensitivity of 0.3625 µM and 4.357 µA µM-1 cm-2, respectively, surpassing other modified electrodes. The modified GCEs were also found to have desirable selectivity, stability, and reproducibility as N2H4 sensors, even for analyses of real samples. This is ascribed to the well-dispersed metallic Ru NPs on the WO3 support, as revealed by UV-vis and photoluminescence studies. Moreover, these Ru-WO3 bifunctional catalysts were also found to exhibit excellent catalytic activities for oxidation of DPS in the presence of H2O2 oxidant with desirable sulfoxide yields.

15.
Nanoscale ; 9(19): 6486-6496, 2017 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-28466933

RESUMO

Highly stable palladium nanoparticles (Pd NPs) supported on a porous carbon aerogel (Pd/CA) prepared by a facile microwave reduction route is reported. The as-prepared Pd/CA composites were characterized by various techniques, viz. XRD, Raman, SEM-EDX, FE-TEM, BET, and TGA. The Pd NPs were found to disperse uniformly in the porous carbon matrix, which possesses a large surface area (851.8 m2 g-1) and pore volume (3.021 cm3 g-1). The Pd/CA composite was found to possess extraordinary electrocatalytic activity and excellent selectivity for simultaneous detection of dopamine (DA) and melatonin (ML). The Pd/CA-modified electrode exhibited a wide linear response range for electrochemical sensing of DA (0.01-100 µM) and ML (0.02-500 µM) with a detection limit of 0.0026 and 0.0071 µM, respectively. In addition, the electrochemical sensor reported herein was successfully applied for the detection of DA and ML in human serum and urine samples, revealing perspective practical applications.


Assuntos
Carbono , Técnicas Eletroquímicas , Nanopartículas Metálicas , Paládio , Análise Química do Sangue , Dopamina/análise , Eletrodos , Humanos , Melatonina/análise , Urinálise
16.
J Colloid Interface Sci ; 499: 83-92, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28364718

RESUMO

The toxicity and environmental pollution by nitro aromatic compounds in water samples is the most recognized problem in worldwide. Hence, we have developed a simple and highly sensitive electrochemical method for the determination of 4-nitrophenol (4-NP) in water samples based on a chitosan (CHT) crafted zinc oxide nanoneedles (ZnO NDs) modified screen printed carbon electrode. The CHT/ZnO NDs were characterized by Field emission scanning electron microscope, Fourier transform infrared spectroscopy and X-ray diffraction technique. The CHT/ZnO NDs modified electrode showed an enhanced electrocatalytic activity and lower potential detection towards 4-NP, compared with other modified electrodes. Under optimum conditions, the differential pulse voltammetry (DPV) response of CHT/ZnO NDs modified electrode displayed a wide linear response range from 0.5 to 400.6µM towards the detection of 4-NP with a detection limit (LOD) of 0.23µM. The CHT/ZnO NDs modified electrode was used for specific and sensitive detection of 4-NP in presence of possible interfering species and common metal ions with long-term stability. In addition, the excellent analytical performance of the proposed sensor was successfully applied for determination of 4-NP in water samples.

17.
J Colloid Interface Sci ; 498: 144-152, 2017 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-28324720

RESUMO

To date, the natural alkaloids are mostly used in the field of pharmacological applications and the active substance of palmatine was extensively used in cancer therapy and other biomedical applications. Hence, in this study we report a simple preparation of poly-l-lysine (PLL) electro-polymerized on the surface of functionalized multiwalled carbon nanotubes (f-MWCNT) for electrochemical detection of palmatine content in human serum and urine samples. The active amino group of PLL plays a vital role towards the oxidation palmatine and exhibits superior electrocatalytic activity. Under optimum conditions, the prepared f-MWCNT/PLL composite shows a wide linear response range over the palmatine concentration ranging from 0.5µM to 425µM, and a detection limit (LOD) of 0.12µM based on S/N =3 (signal to noise ratio). The real time monitoring of palmatine content in serum and urine samples displays an appropriate recoveries and excellent performance for the practical analysis. The advantage of this developed system was simple, higher electrocatalytic activity, long-term stability and low cost. We hope that the prepared composite opens a new way for the fabrication of different biosensors in the field of biomedical application.


Assuntos
Alcaloides de Berberina/sangue , Alcaloides de Berberina/urina , Nanotubos de Carbono/química , Polilisina/química , Materiais Biocompatíveis/química , Técnicas Biossensoriais/métodos , Catálise , Técnicas Eletroquímicas , Eletrodos , Humanos , Limite de Detecção , Microscopia Eletrônica de Varredura , Nanocompostos/química , Oxirredução , Tamanho da Partícula , Espectroscopia Fotoeletrônica , Polimerização , Espectroscopia de Infravermelho com Transformada de Fourier , Propriedades de Superfície
18.
Sci Rep ; 7: 41213, 2017 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-28128225

RESUMO

We report a simple new approach for green preparation of gallic acid supported reduced graphene oxide encapsulated gold nanoparticles (GA-RGO/AuNPs) via one-pot hydrothermal method. The as-prepared composites were successfully characterized by using Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, X-ray powder diffraction techniques (XRD), scanning electron microscope (SEM), high resolution transmission electron microscopy (HRTEM) and elemental analysis. The GA-RGO/AuNPs modified electrode behaves as a hybrid electrode material for sensitive and selective detection of dopamine (DA) in presence of ascorbic acid (AA) and uric acid (UA). The GA-RGO/AuNPs modified electrode displays an excellent electrocatalytic activity towards the oxidation of DA and exhibits a wide linear response range over the DA concentrations from 0.01-100.3 µM with a detection limit (LOD) of 2.6 nM based on S/N = 3. In addition, the proposed sensor could be applied for the determination of DA in human serum and urine samples for practical analysis.


Assuntos
Dopamina/análise , Ácido Gálico/química , Grafite/química , Química Verde/métodos , Análise de Elementos Finitos , Ouro/química , Limite de Detecção , Nanopartículas Metálicas/química , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Espectroscopia de Infravermelho com Transformada de Fourier , Análise Espectral Raman , Difração de Raios X
19.
J Colloid Interface Sci ; 485: 123-128, 2017 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-27662023

RESUMO

To date, the development of different modified electrodes have received much attention in electrochemistry. The modified electrodes have some drawbacks such as high cost, difficult to handle and not eco friendly. Hence, we report an electrochemical sensor for the determination of palladium ions (Pd2+) using an un-modified screen printed carbon electrode has been developed for the first time, which are characterized and studied via scanning electron microscope and cyclic voltammetry. Prior to determination of Pd2+ ions, the operational conditions of un-modified SPCE was optimized using cyclic voltammetry and showed excellent electro-analytical behavior towards the determination of Pd2+ ions. Electrochemical determination of Pd2+ ions reveal that the un-modified electrode showed lower detection limit of 1.32µM with a linear ranging from 3 to 133.35µM towards the Pd2+ ions concentration via differential pulse voltammetry. The developed sensor also applied to the successfully determination of trace level Pd2+ ions in spiked water samples. In addition, the advantage of this type of electrode is simple, disposable and cost effective in electrochemical sensors.

20.
J Colloid Interface Sci ; 487: 149-155, 2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-27768998

RESUMO

In this study, we demonstrate a simple preparation of graphite (GR) sheets assisted with gelatin (GLN) polypeptide composite was developed for sensitive detection of dopamine (DA) sensor. The GR/GLN composite was prepared by GR powder in GLN solution (5mg/mL) via sonication process. The prepared GR/GLN composite displays well dispersion ability in biopolymer matrix and characterized via scanning electron microscope (SEM), Fourier transform infrared (FTIR) spectroscopy and electrochemical impedance spectroscopy (EIS) studies. The GR/GLN modified electrode showed an excellent electrocatalytic activity toward the oxidation of DA, suggesting that the successful formation of GR sheets crosslinked with the functional groups of GLN polypeptide. In addition, the GR/GLN modified electrode achieved a wide linear response ranging from 0.05 to 79.5µM with a detection limit of 0.0045µM. The calculated analytical sensitivity of the sensor was 1.36±0.02µAµM-1cm-2. Conversely, the modified electrode demonstrates a good storage stability, reproducibility and repeatability. In addition, the sensor manifests the determination of DA in human serum and urine samples for practical applications.


Assuntos
Técnicas Biossensoriais/métodos , Dopamina , Técnicas Eletroquímicas , Gelatina/química , Grafite/química , Nanocompostos/química , Dopamina/sangue , Dopamina/urina , Eletrodos , Humanos , Limite de Detecção , Nanocompostos/ultraestrutura , Oxirredução , Reprodutibilidade dos Testes , Sonicação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA