Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Microbiol Resour Announc ; 13(4): e0096623, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38426730

RESUMO

We reported on microbial communities isolated from 18 seawater samples affected by oil spills in Rayong province, Thailand, using the V3-V4 region of 16S rRNA gene sequencing.

2.
J Steroid Biochem Mol Biol ; 231: 106302, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36990165

RESUMO

Estrogen receptors (ERs) were known as estrogen-activated transcription factors and function as major reproduction regulators in vertebrates. The presence of er genes had been reported in Molluscan cephalopods and gastropods. However, they were considered as constitutive activators with unknown biological functions since reporter assays for these ERs did not show a specific response to estrogens. In this study, we tried characterization of ER orthologues from the Yesso scallop, Patinopecten yessoensis, in which estrogens had been proven to be produced in the gonads and involved in the spermatogenesis and vitellogenesis. Identified ER and estrogen related receptor (ERR) of Yesso scallops, designated as py-ER and py-ERR, conserved specific domain structures for a nuclear receptor. Their DNA binding domains showed high similarities to those of vertebrate ER orthologues, while ligand binding domains had low similarities with them. Both the py-er and py-err expression levels decreased in the ovary at the mature stage while py-vitellogenin expression increased in the ovary by quantitative real-time RT-PCR. Also, the py-er and py-err showed higher expressions in the testis than ovary during the developing and mature period, suggesting both genes might function in the spermatogenesis and testis development. The py-ER showed binding affinities to vertebrate estradiol-17ß (E2). However, the intensity was weaker than the vertebrate ER, indicating scallops might exist endogenous estrogens with a different structure. On the other hand, the binding property of py-ERR to E2 was not confirmed in this assay, speculating that py-ERR was a constitutive activator as other vertebrate ERRs. Further, the py-er was localized in the spermatogonia in the testis and in the auxiliary cells in the ovary by in situ hybridization, indicating its potential roles in promoting spermatogenesis and vitellogenesis. Taken together, the present study demonstrated that py-ER was an authentic E2 receptor in the Yesso scallop and might have functions for the spermatogonia proliferation and vitellogenesis, while py-ERR was involved in the reproduction by undiscovered manners.


Assuntos
Pectinidae , Receptores de Estrogênio , Masculino , Animais , Feminino , Receptores de Estrogênio/genética , Receptores de Estrogênio/metabolismo , Gônadas , Pectinidae/genética , Pectinidae/metabolismo , Estrogênios/metabolismo
3.
Microbiol Resour Announc ; 11(1): e0100721, 2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-34989613

RESUMO

Aeromonas schubertii is a Gram-negative, rod-shaped bacterium. It is a rare species that has been reported in humans and aquatic animals. Here, we report the genome sequences of A. schubertii strains isolated from two mass mortality events in central Thailand that were associated with aquaculture of Asian seabass.

4.
Animals (Basel) ; 9(9)2019 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-31470682

RESUMO

In the published article, "Phenotypic Stability of Sex and Expression of Sex Identification Markers in the Adult Yesso Scallop Mizuhopecten yessoensis throughout the Reproductive Cycle. [...].

5.
Animals (Basel) ; 9(5)2019 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-31137722

RESUMO

The objective of the present study was to analyze the phenotypic stability of sex after sex differentiation in the Yesso scallop, which is a gonochoristic species that has been described as protandrous. So far, no study has investigated in detail the sexual fate of the scallop after completion of sex differentiation, although bivalve species often show annual sex change. In the present study, we performed a tracking experiment to analyze the phenotypic stability of sex in scallops between one and two years of age. We also conducted molecular marker analyses to describe sex differentiation and gonad development. The results of the tracking experiment revealed that all scallops maintained their initial sex phenotype, as identified in the last reproductive period. Using molecular analyses, we characterized my-dmrt2 and my-foxl2 as sex identification markers for the testis and ovary, respectively. We conclude by proposing that the Yesso scallop is a sex-stable bivalve after its initial sex differentiation and that it maintains a sex-stable maturation system throughout its life. The sex-specific molecular markers identified in this study are useful tools to assess the reproductive status of the Yesso scallop.

6.
J Steroid Biochem Mol Biol ; 186: 22-33, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30195968

RESUMO

Sex steroids are crucial for controlling gametogenesis and germ cell maturation in vertebrates. It has been proposed that Yesso scallop (Mizuhopecten yessoensis) has the same sex steroids as those animals, but the scallop biosynthetic pathway is unclear. In this study, we characterized several steroidogenesis-related genes in M. yessoensis and proposed a putative biosynthetic pathway for sex steroids that is similar to that of vertebrates. Specifically, we identified several steroidogenesis-related gene sequences that encode steroid metabolizing enzymes: StAR-related lipid transfer (START) protein, 17α-hydroxylase, 17,20-lyase (cyp17a), 17ß-hydroxysteroid dehydrogenase (hsd17b), and 3ß-hydroxysteroid dehydrogenase (hsd3b). We sampled adult scallops throughout their reproductive phase to compare their degree of maturation with their intensity of mRNA expression. Semi-quantitative RT-PCR analysis revealed a ubiquitous expression of transcripts for steroid metabolizing enzymes (i.e., star, cyp17a, hsd17b, and hsd3b) in peripheral and gonadal tissues. Real-time PCR analysis revealed a high level of expression of star3 and cyp17a genes in gonadal tissues at the early stage of cell differentiation in scallops. Interestingly, mRNA expression of hsd3b and hsd17b genes showed a synchronous pattern related to degree of gonad maturity. These results indicate that both hsd3b and hsd17b genes are likely involved in steroidogenesis in scallops. We therefore believe that these steroid-metabolizing enzymes allow scallops to endogenously produce sex steroids to regulate reproductive events.


Assuntos
Gametogênese , Pectinidae/enzimologia , Pectinidae/fisiologia , Esteroides/metabolismo , 17-Hidroxiesteroide Desidrogenases/genética , 17-Hidroxiesteroide Desidrogenases/metabolismo , Animais , Vias Biossintéticas , Feminino , Masculino , Pectinidae/genética , Reprodução , Diferenciação Sexual , Esteroide 17-alfa-Hidroxilase/genética , Esteroide 17-alfa-Hidroxilase/metabolismo , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA