Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
Front Cell Infect Microbiol ; 11: 716436, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34604108

RESUMO

Rapid and demonstrable inactivation of SARS-CoV-2 is crucial to ensure operator safety during high-throughput testing of clinical samples. The inactivation efficacy of SARS-CoV-2 was evaluated using commercially available lysis buffers from three viral RNA extraction kits used on two high-throughput (96-well) RNA extraction platforms (Qiagen QIAcube HT and the Thermo Fisher KingFisher Flex) in combination with thermal treatment. Buffer volumes and sample ratios were chosen for their optimised suitability for RNA extraction rather than inactivation efficacy and tested against a representative sample type: SARS-CoV-2 spiked into viral transport medium (VTM). A lysis buffer mix from the MagMAX Pathogen RNA/DNA kit (Thermo Fisher), used on the KingFisher Flex, which included guanidinium isothiocyanate (GITC), a detergent, and isopropanol, demonstrated a minimum inactivation efficacy of 1 × 105 tissue culture infectious dose (TCID)50/ml. Alternative lysis buffer mixes from the MagMAX Viral/Pathogen Nucleic Acid kit (Thermo Fisher) also used on the KingFisher Flex and from the QIAamp 96 Virus QIAcube HT Kit (Qiagen) used on the QIAcube HT (both of which contained GITC and a detergent) reduced titres by 1 × 104 TCID50/ml but did not completely inactivate the virus. Heat treatment alone (15 min, 68°C) did not completely inactivate the virus, demonstrating a reduction of 1 × 103 TCID50/ml. When inactivation methods included both heat treatment and addition of lysis buffer, all methods were shown to completely inactivate SARS-CoV-2 inactivation against the viral titres tested. Results are discussed in the context of the operation of a high-throughput diagnostic laboratory.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , RNA Viral , Manejo de Espécimes , Inativação de Vírus
3.
Vaccine ; 28(50): 7979-86, 2010 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-20920573

RESUMO

Mycobacterium bovis BCG-vaccination in the guinea pig model of tuberculosis (TB) is sufficiently protective that candidate TB vaccines are judged against this. Little is understood about how the BCG vaccine works and, in the absence of a definitive correlate of protection, it is difficult to interpret the significance of novel vaccine induced host responses. Here an extended custom-made microarray (86 guinea pig genes) was used to dissect temporal changes in BCG-vaccine induced gene signatures to different mycobacterial antigens. Initially at 4h, pro-inflammatory genes such as IL-1α, IL-1ß, IL-8 and GRO were up-regulated (P<0.001) and these were then superseded by IFN-γ and GM-CSF (at 12 and 20h) post-stimulation, ex vivo with PPD. Similar genes were seen following stimulation with viable BCG but with the addition of IL-23 (P<0.01) after 8h. Our results suggest that temporal changes in the up- and down-regulation of a variety of genes are required to trigger a successful protective response to TB in guinea pigs. This provides base-line information against which new TB vaccines can be compared.


Assuntos
Vacina BCG/imunologia , Perfilação da Expressão Gênica , Cobaias/genética , Animais , Antígenos de Bactérias/imunologia , Células Cultivadas , Citocinas/genética , Citocinas/metabolismo , Regulação da Expressão Gênica , Cobaias/imunologia , Análise de Sequência com Séries de Oligonucleotídeos , Baço/citologia , Baço/imunologia , Fatores de Tempo , Tuberculose/imunologia , Tuberculose/prevenção & controle , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA