Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 17.411
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38961821

RESUMO

Alzheimer's Disease (AD) is the 5th leading cause of death in older adults and treatment options are severely lacking. Recent findings demonstrate a strong relationship between skeletal muscle and cognitive function, with evidence supporting that muscle quality and cognitive function are positively correlated in older adults. Conversely, decreased muscle function is associated with a 3-fold increased risk of cognitive decline. Based on these observations, the purpose of this study was to investigate the negative effects of muscle disuse (via a model of hindlimb immobilization (HLI)) on hippocampal insulin sensitivity and mitochondrial function and identify the potential mechanisms involved. HLI for 10 days in 4-month-old female Wistar rats resulted in the following novel findings: 1) hippocampal insulin resistance and deficits in whole body glucose homeostasis, 2) dramatically increased mitochondrial reactive oxygen species (ROS) production in the hippocampus, 3) elevated markers for amyloidogenic cleavage of APP and tau protein in the hippocampus, 4) and reduced BDNF expression. These findings were associated with global changes in iron homeostasis, with muscle disuse producing muscle iron accumulation in association with decreased serum and whole brain iron levels. We report the novel finding that muscle disuse alters brain iron homeostasis and reveal a strong negative correlation between muscle and brain iron content. Overall, HLI-induced muscle disuse has robust negative effects on hippocampal insulin sensitivity and ROS production in association with altered brain iron homeostasis. This work provides potential novel mechanisms that may help explain how loss of muscle function contributes to cognitive decline and AD risk.

2.
Evol Ecol ; 38(3): 387-397, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38946730

RESUMO

Animal and plant colouration presents a striking dimension of phenotypic variation, the study of which has driven general advances in ecology, evolution, and animal behaviour. Quantitative Colour Pattern Analysis (QCPA) is a dynamic framework for analysing colour patterns through the eyes of non-human observers. However, its extensive array of user-defined image processing and analysis tools means image analysis is often time-consuming. This hinders the full use of analytical power provided by QCPA and its application to large datasets. Here, we offer a robust and comprehensive batch script, allowing users to automate many QCPA workflows. We also provide a complimentary set of useful R scripts for downstream data extraction and analysis. The presented batch processing extension will empower users to further utilise the analytical power of QCPA and facilitate the development of customised semi-automated workflows. Such quantitatively scaled workflows are crucial for exploring colour pattern spaces and developing ever-richer frameworks for analysing organismal colouration accounting for visual perception in animals other than humans. These advances will, in turn, facilitate testing hypotheses on the function and evolution of vision and signals at quantitative and qualitative scales, which are otherwise computationally unfeasible. Supplementary Information: The online version contains supplementary material available at 10.1007/s10682-024-10291-7.

3.
Proc Natl Acad Sci U S A ; 121(28): e2403130121, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38950369

RESUMO

DNA polymerase κ (Polκ) is a specialized polymerase that has multiple cellular roles such as translesion DNA synthesis, replication of repetitive sequences, and nucleotide excision repair. We have developed a method for capturing DNA synthesized by Polκ utilizing a Polκ-specific substrate, N2-(4-ethynylbenzyl)-2'-deoxyguanosine (EBndG). After shearing of the DNA into 200 to 500 bp lengths, the EBndG-containing DNA was covalently bound to biotin using the Cu(I)-catalyzed alkyne-azide cycloaddition reaction and isolated with streptavidin beads. Isolated DNA was then ligated to adaptors, followed by PCR amplification and next-generation sequencing to generate genome-wide repair maps. We have termed this method polymerase κ sequencing. Here, we present the human genome maps for Polκ activity in an undamaged cell line. We found that Polκ activity was enhanced in GC-rich regions, euchromatin regions, the promoter of genes, and in DNA that is replicated early in the S phase.


Assuntos
DNA Polimerase Dirigida por DNA , Fibroblastos , Genoma Humano , Humanos , DNA Polimerase Dirigida por DNA/metabolismo , Fibroblastos/metabolismo , Reparo do DNA , DNA/metabolismo , DNA/genética , Linhagem Celular , Replicação do DNA
4.
J Phys Chem B ; 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38951498

RESUMO

The chimeric oncoprotein Bcr-Abl is the causative agent of virtually all chronic myeloid leukemias and a subset of acute lymphoblastic leukemias. As a result of the so-called Philadelphia chromosome translocation t(9;22), Bcr-Abl manifests as a constitutively active tyrosine kinase, which promotes leukemogenesis by activation of cell cycle signaling pathways. Constitutive and oncogenic activation is mediated by an N-terminal coiled-coil oligomerization domain in Bcr (Bcr-CC), presenting a therapeutic target for inhibition of Bcr-Abl activity toward the treatment of Bcr-Abl+ leukemias. Previously, we demonstrated that a rationally designed Bcr-CC mutant, CCmut3, exerts a dominant negative effect upon Bcr-Abl activity by preferential oligomerization with Bcr-CC. Moreover, we have shown that conjugation to a leukemia-specific cell-penetrating peptide (CPP-CCmut3) improves intracellular delivery and activity. However, our full-length CPP-CCmut3 construct (81 aa) is encumbered by an intrinsically high degree of conformational variability and susceptibility to proteolytic degradation relative to traditional small-molecule therapeutics. Here, we iterate a new generation of CCmut3 inhibitors against Bcr-CC-mediated Bcr-Abl assembly designed to address these constraints through incorporation of all-hydrocarbon staples spanning i and i + 7 positions in α-helix 2 (CPP-CCmut3-st). We utilize computational modeling and biomolecular simulation to evaluate single- and double-stapled CCmut3 candidates in silico for dynamics and binding energetics. We further model a truncated system characterized by the deletion of α-helix 1 and the flexible loop linker, which are known to impart high conformational variability. To study the impact of the N-terminal cyclic CPP toward model stability and inhibitor activity, we also model the full-length and truncated systems devoid of the CPP, with a cyclized CPP, and with an open-configuration CPP, for a total of six systems that comprise our library. From this library, we present lead-stapled peptide candidates to be synthesized and evaluated experimentally as our next iteration of inhibitors against Bcr-Abl.

5.
J Am Chem Soc ; 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38951503

RESUMO

Kinetic proofreading is used throughout natural systems to enhance the specificity of molecular recognition. At its most basic level, kinetic proofreading uses a supply of chemical fuel to drive a recognition interaction out of equilibrium, allowing a single free-energy difference between correct and incorrect targets to be exploited two or more times. Despite its importance in biology, there has been little effort to incorporate kinetic proofreading into synthetic systems in which molecular recognition is important, such as nucleic acid nanotechnology. In this article, we introduce a DNA strand displacement-based kinetic proofreading motif, showing that the consumption of a DNA-based fuel can be used to enhance molecular recognition during a templated dimerization reaction. We then show that kinetic proofreading can enhance the specificity with which a probe discriminates single nucleotide mutations, both in terms of the initial rate with which the probe reacts and the long-time behavior.

7.
Sci Adv ; 10(27): eado5979, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38959303

RESUMO

Programmable self-assembly has seen an explosion in the diversity of synthetic crystalline materials, but developing strategies that target "self-limiting" assemblies has remained a challenge. Among these, self-closing structures, in which the local curvature defines the finite global size, are prone to polymorphism due to thermal bending fluctuations, a problem that worsens with increasing target size. Here, we show that assembly complexity can be used to eliminate this source of polymorphism in the assembly of tubules. Using many distinct components, we prune the local density of off-target geometries, increasing the selectivity of the tubule width and helicity to nearly 100%. We further show that by reducing the design constraints to target either the pitch or the width alone, fewer components are needed to reach complete selectivity. Combining experiments with theory, we reveal an economical limit, which determines the minimum number of components required to create arbitrary assembly sizes with full selectivity.

8.
Biodes Res ; 6: 0037, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38919711

RESUMO

Living cells are exquisitely tuned to sense and respond to changes in their environment. Repurposing these systems to create engineered biosensors has seen growing interest in the field of synthetic biology and provides a foundation for many innovative applications spanning environmental monitoring to improved biobased production. In this review, we present a detailed overview of currently available biosensors and the methods that have supported their development, scale-up, and deployment. We focus on genetic sensors in living cells whose outputs affect gene expression. We find that emerging high-throughput experimental assays and evolutionary approaches combined with advanced bioinformatics and machine learning are establishing pipelines to produce genetic sensors for virtually any small molecule, protein, or nucleic acid. However, more complex sensing tasks based on classifying compositions of many stimuli and the reliable deployment of these systems into real-world settings remain challenges. We suggest that recent advances in our ability to precisely modify nonmodel organisms and the integration of proven control engineering principles (e.g., feedback) into the broader design of genetic sensing systems will be necessary to overcome these hurdles and realize the immense potential of the field.

9.
Comput Biol Med ; 178: 108778, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38925086

RESUMO

Body-machine interfaces (BoMIs)-systems that control assistive devices (e.g., a robotic manipulator) with a person's movements-offer a robust and non-invasive alternative to brain-machine interfaces for individuals with neurological injuries. However, commercially-available assistive devices offer more degrees of freedom (DOFs) than can be efficiently controlled with a user's residual motor function. Therefore, BoMIs often rely on nonintuitive mappings between body and device movements. Learning these mappings requires considerable practice time in a lab/clinic, which can be challenging. Virtual environments can potentially address this challenge, but there are limited options for high-DOF assistive devices, and it is unclear if learning with a virtual device is similar to learning with its physical counterpart. We developed a novel virtual robotic platform that replicated a commercially-available 6-DOF robotic manipulator. Participants controlled the physical and virtual robots using four wireless inertial measurement units (IMUs) fixed to the upper torso. Forty-three neurologically unimpaired adults practiced a target-matching task using either the physical (sample size n = 25) or virtual device (sample size n = 18) involving pre-, mid-, and post-tests separated by four training blocks. We found that both groups made similar improvements from pre-test in movement time at mid-test (Δvirtual: 9.9 ± 9.5 s; Δphysical: 11.1 ± 9.9 s) and post-test (Δvirtual: 11.1 ± 9.1 s; Δphysical: 11.8 ± 10.5 s) and in path length at mid-test (Δvirtual: 6.1 ± 6.3 m/m; Δphysical: 3.3 ± 3.5 m/m) and post-test (Δvirtual: 6.6 ± 6.2 m/m; Δphysical: 3.5 ± 4.0 m/m). Our results indicate the feasibility of using virtual environments for learning to control assistive devices. Future work should determine how these findings generalize to clinical populations.

10.
Viruses ; 16(6)2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38932154

RESUMO

We previously reported that deletion of a 44-nucleotide element in the 3' untranslated region (UTR) of the Chikungunya virus (CHIKV) genome enhances the virulence of CHIKV infection in mice. Here, we find that while this 44-nucleotide deletion enhances CHIKV fitness in murine embryonic fibroblasts in a manner independent of the type I interferon response, the same mutation decreases viral fitness in C6/36 mosquito cells. Further, the fitness advantage conferred by the UTR deletion in mammalian cells is maintained in vivo in a mouse model of CHIKV dissemination. Finally, SHAPE-MaP analysis of the CHIKV 3' UTR revealed this 44-nucleotide element forms a distinctive two-stem-loop structure that is ablated in the mutant 3' UTR without altering additional 3' UTR RNA secondary structures.


Assuntos
Regiões 3' não Traduzidas , Febre de Chikungunya , Vírus Chikungunya , Replicação Viral , Vírus Chikungunya/genética , Vírus Chikungunya/fisiologia , Animais , Camundongos , Febre de Chikungunya/virologia , RNA Viral/genética , Virulência , Linhagem Celular , Fibroblastos/virologia , Aptidão Genética , Humanos , Deleção de Sequência , Conformação de Ácido Nucleico , Modelos Animais de Doenças
11.
Nanomaterials (Basel) ; 14(12)2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38921926

RESUMO

Femtosecond high-intensity laser pulses at intensities surpassing 1014 W/cm2 can generate a diverse range of functional surface nanostructures. Achieving precise control over the production of these functional structures necessitates a thorough understanding of the surface morphology dynamics with nanometer-scale spatial resolution and picosecond-scale temporal resolution. In this study, we show that single XFEL pulses can elucidate structural changes on surfaces induced by laser-generated plasmas using grazing-incidence small-angle X-ray scattering (GISAXS). Using aluminium-coated multilayer samples we distinguish between sub-picosecond (ps) surface morphology dynamics and subsequent multi-ps subsurface density dynamics with nanometer-depth sensitivity. The observed subsurface density dynamics serve to validate advanced simulation models representing matter under extreme conditions. Our findings promise to open new avenues for laser material-nanoprocessing and high-energy-density science.

12.
Urology ; 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38880345

RESUMO

OBJECTIVE: To compare the risk of intentional self-harm (ISH) and suicide in older men using 5-α reductase inhibitors (5-ARIs) and alpha-blockers for benign prostatic hyperplasia (BPH). Observational research of older men with BPH suggested an increase in ISH with 5-ARI use compared with nonuse; we aimed to address potential confounding by indication with an active comparator reference group. METHODS: Using Medicare data linked to the National Death Index (NDI) from 2007-2016, we implemented a retrospective cohort design in males aged ≥65 years who initiated 5-ARI or alpha-blocker use for BPH. ISH was identified using ICD-9-CM and ICD-10-CM diagnosis codes. Suicides were identified through cause-of-death information from the NDI. We used inverse probability of treatment weighted Cox proportional hazards regression to compare time-to-event between treatment groups, with robust variance estimation. RESULTS: The event rates for ISH and suicide, respectively, were 0.314 and 0.308 per 1000 person-years (PY) among 5-ARI users (n = 181,675), and 0.364 and 0.382 per 1000PY among alpha-blocker users (n = 850,476). For 5-ARI use relative to alpha-blocker use, hazard ratios (HRs) for ISH and suicide, respectively, were 0.88 (95% CI:0.62-1.25) and 0.82 (95% CI:0.54-1.24); for the composite outcome (non-fatal ISH or suicide), the HR was 0.88 (95% CI:0.66-1.16). Subgroup and sensitivity analyses supported these results. CONCLUSION: 5-ARI use was not associated with an increased risk for ISH or suicide compared to alpha-blocker use in older men with BPH. Study limitations included low event rates and potentially low sensitivity for ISH events.

14.
Artigo em Inglês | MEDLINE | ID: mdl-38867707

RESUMO

OBJECTIVES: The Simple Erosion Narrowing Score (SENS) is a simplification of the Sharp/van der Heijde score (SHS). Previous studies found SENS and SHS to have very similar measurement properties, but suggest that SENS has a lower discriminative ability that may result in reduced power. Therefore, we aimed to quantify the effect of using SENS rather than SHS on the power to show between-group differences in radiographic progression. METHODS: Using data from two clinical trials in rheumatoid arthritis (DRESS and BeSt), SENS was derived from the SHS. Criterion validity of the SENS in relation to the SHS was assessed by calculating the Spearman correlation. The power of both scores to show a difference between groups was compared using bootstrapping to generate 10.000 replications of each study. Then, the number of replications with a significant difference in progression (using ANCOVA adjusted for baseline scores) were compared. RESULTS: Correlations between SENS and SHS were all >0.9, indicating high criterion validity of SENS compared with SHS as a reference standard. There was one exception, the DRESS study showed a somewhat lower correlation for the change score at 18 months (0.787). The loss in power of SENS over SHS was limited to at most 19% (BeSt year 5). In addition, the difference in power between SENS and SHS is smaller at higher levels of power. CONCLUSION: SENS appears to be a reasonable alternative to SHS, with only a limited loss of power to show between-group differences in radiographic progression.

15.
Phys Rev Lett ; 132(22): 226201, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38877909

RESUMO

Electrical control of charge density waves has been of immense interest, as the strong underlying electron-lattice interactions potentially open new, efficient pathways for manipulating their ordering and, consequently, their electronic properties. However, the transition mechanisms are often unclear as electric field, current, carrier injection, heat, and strain can all contribute and play varying roles across length scales and timescales. Here, we provide insight on how electrical stimulation melts the room temperature charge density wave order in 1T-TaS_{2} by visualizing the atomic and mesoscopic structural dynamics from quasi-static to nanosecond pulsed melting. Using a newly developed ultrafast electron microscope setup with electrical stimulation, we reveal the order and strain dynamics during voltage pulses as short as 20 ns. The order parameter dynamics across a range of pulse amplitudes and durations support a thermally driven mechanism even for fields as high as 19 kV cm^{-1}. In addition, time-resolved imaging reveals a heterogeneous, mesoscopic strain response across the flake, including MHz-scale acoustic resonances that emerge during sufficiently short pulsed excitation which may modulate the order. These results suggest that metallic charge density wave phases like studied here may be more robust to electronic switching pathways than insulating ones, motivating further investigations at higher fields and currents in this and other related systems.

17.
Nat Med ; 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38907159

RESUMO

Immune checkpoint inhibitors and BRAF-targeted therapy each improve survival in melanoma. Immune changes early during targeted therapy suggest the mechanisms of each drug class could work synergistically. In the non-comparative, randomized, phase 2 NeoTrio trial, we investigated whether targeted therapy could boost the proportion of patients achieving long-term recurrence-free survival with neoadjuvant immunotherapy in resectable stage III BRAFV600-mutant melanoma. Sixty patients (42% females) were randomized to pembrolizumab alone (n = 20), sequential therapy (dabrafenib plus trametinib followed by pembrolizumab; n = 20) or concurrent (triple) therapy (n = 20), followed by surgery and adjuvant therapy. The primary outcome was pathological response; secondary outcomes included radiographic response, recurrence-free survival, overall survival, surgical outcomes, peripheral blood and tumor analyses and safety. The pathological response rate was 55% (11/20; including six pathological complete responses (pCRs)) with pembrolizumab, 50% (10/20; three pCRs) with sequential therapy and 80% (16/20; ten pCRs) with concurrent therapy, which met the primary outcome in each arm. Treatment-related adverse events affected 75-100% of patients during neoadjuvant treatment, with seven early discontinuations (all in the concurrent arm). At 2 years, event-free survival was 60% with pembrolizumab, 80% with sequential therapy and 71% with concurrent therapy. Recurrences after major pathological response were more common in the targeted therapy arms, suggesting a reduction in response 'quality' when targeted therapy is added to neoadjuvant immunotherapy. Risking the curative potential of immunotherapy in melanoma cannot be justified. Pending longer follow-up, we suggest that immunotherapy and targeted therapy should not be combined in the neoadjuvant setting for melanoma. ClinicalTrials.gov registration: NCT02858921 .

18.
Cereb Cortex ; 34(6)2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38880786

RESUMO

Neuroimaging is a popular method to map brain structural and functional patterns to complex human traits. Recently published observations cast doubt upon these prospects, particularly for prediction of cognitive traits from structural and resting state functional magnetic resonance imaging (MRI). We leverage baseline data from thousands of children in the Adolescent Brain Cognitive DevelopmentSM Study to inform the replication sample size required with univariate and multivariate methods across different imaging modalities to detect reproducible brain-behavior associations. We demonstrate that by applying multivariate methods to high-dimensional brain imaging data, we can capture lower dimensional patterns of structural and functional brain architecture that correlate robustly with cognitive phenotypes and are reproducible with only 41 individuals in the replication sample for working memory-related functional MRI, and ~ 100 subjects for structural and resting state MRI. Even with 100 random re-samplings of 100 subjects in discovery, prediction can be adequately powered with 66 subjects in replication for multivariate prediction of cognition with working memory task functional MRI. These results point to an important role for neuroimaging in translational neurodevelopmental research and showcase how findings in large samples can inform reproducible brain-behavior associations in small sample sizes that are at the heart of many research programs and grants.


Assuntos
Encéfalo , Cognição , Imageamento por Ressonância Magnética , Neuroimagem , Humanos , Adolescente , Imageamento por Ressonância Magnética/métodos , Encéfalo/crescimento & desenvolvimento , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Masculino , Feminino , Cognição/fisiologia , Neuroimagem/métodos , Memória de Curto Prazo/fisiologia , Criança , Desenvolvimento do Adolescente/fisiologia , Mapeamento Encefálico/métodos
19.
Addict Neurosci ; 112024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38911872

RESUMO

Adolescence marks a sensitive period for neurodevelopment wherein exposure to drugs of abuse may disrupt maturation and induce persistent changes in neurophysiology which may exacerbate the risk for developing substance use disorders in adulthood. Adolescent nicotine exposure (ANE) enhances motivation to obtain drugs of abuse, particularly opioids, and increases vulnerability for the development of opioid use disorder (OUD). Here, we characterized ANE effects on learning about the adverse consequences of opioid consumption in adulthood in the absence of further nicotine administration. First, we show that ANE engenders punishment resistant fentanyl self-administration in a heterogenous seeking-taking chain schedule of reinforcement at least at the tested dose of fentanyl (0.75 µg/kg). We found that ANE rats consumed significantly more fentanyl and contingent foot shock punishment was less efficacious in limiting fentanyl seeking in ANE rats, relative to nicotine-naïve controls. Next, we demonstrated that ANE limits learning about the deleterious consequences of acute opioid intoxication in adulthood. In a combined conditioned taste avoidance and place preference paradigm we found that ANE resulted in significant reductions in the strength of morphine-induced CTA, and a simultaneous enhancement of CPP at a higher dose that was less capable of driving reinforcement in naïve controls. Finally, we examined the expression of perineuronal nets (PNNs) within insular cortex (IC) and found ANE rats to have increased density of PNNs across the anterior IC and significantly more parvalbumin-labeled IC cells relative to naïve controls. Together, these data lay the framework for a mechanistic explanation of the extreme comorbidity between nicotine use and development of OUDs.

20.
J Neuroinflammation ; 21(1): 157, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38879499

RESUMO

BACKGROUND: Cystatin F is a secreted lysosomal cysteine protease inhibitor that has been implicated in affecting the severity of demyelination and enhancing remyelination in pre-clinical models of immune-mediated demyelination. How cystatin F impacts neurologic disease severity following viral infection of the central nervous system (CNS) has not been well characterized and was the focus of this study. We used cystatin F null-mutant mice (Cst7-/-) with a well-established model of murine coronavirus-induced neurologic disease to evaluate the contributions of cystatin F in host defense, demyelination and remyelination. METHODS: Wildtype controls and Cst7-/- mice were intracranially (i.c.) infected with a sublethal dose of the neurotropic JHM strain of mouse hepatitis virus (JHMV), with disease progression and survival monitored daily. Viral plaque assays and qPCR were used to assess viral levels in CNS. Immune cell infiltration into the CNS and immune cell activation were determined by flow cytometry and 10X genomics chromium 3' single cell RNA sequencing (scRNA-seq). Spinal cord demyelination was determined by luxol fast blue (LFB) and Hematoxylin/Eosin (H&E) staining and axonal damage assessed by immunohistochemical staining for SMI-32. Remyelination was evaluated by electron microscopy (EM) and calculation of g-ratios. RESULTS: JHMV-infected Cst7-/- mice were able to control viral replication within the CNS, indicating that cystatin F is not essential for an effective Th1 anti-viral immune response. Infiltration of T cells into the spinal cords of JHMV-infected Cst7-/- mice was increased compared to infected controls, and this correlated with increased axonal damage and demyelination associated with impaired remyelination. Single-cell RNA-seq of CD45 + cells enriched from spinal cords of infected Cst7-/- and control mice revealed enhanced expression of transcripts encoding T cell chemoattractants, Cxcl9 and Cxcl10, combined with elevated expression of interferon-g (Ifng) and perforin (Prf1) transcripts in CD8 + T cells from Cst7-/- mice compared to controls. CONCLUSIONS: Cystatin F is not required for immune-mediated control of JHMV replication within the CNS. However, JHMV-infected Cst7-/- mice exhibited more severe clinical disease associated with increased demyelination and impaired remyelination. The increase in disease severity was associated with elevated expression of T cell chemoattractant chemokines, concurrent with increased neuroinflammation. These findings support the idea that cystatin F influences expression of proinflammatory gene expression impacting neuroinflammation, T cell activation and/or glia cell responses ultimately impacting neuroinflammation and neurologic disease.


Assuntos
Infecções por Coronavirus , Cistatinas , Doenças Desmielinizantes , Camundongos Knockout , Vírus da Hepatite Murina , Animais , Camundongos , Doenças Desmielinizantes/patologia , Doenças Desmielinizantes/metabolismo , Doenças Desmielinizantes/virologia , Doenças Desmielinizantes/imunologia , Vírus da Hepatite Murina/patogenicidade , Cistatinas/genética , Cistatinas/metabolismo , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/patologia , Camundongos Endogâmicos C57BL , Doenças Neuroinflamatórias/imunologia , Doenças Neuroinflamatórias/patologia , Doenças Neuroinflamatórias/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA