Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(18): 12836-12849, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38683943

RESUMO

The biological properties of two water-soluble organic cations based on polypyridyl structures commonly used as ligands for photoactive transition metal complexes designed to interact with biomolecules are investigated. A cytotoxicity screen employing a small panel of cell lines reveals that both cations show cytotoxicity toward cancer cells but show reduced cytotoxicity to noncancerous HEK293 cells with the more extended system being notably more active. Although it is not a singlet oxygen sensitizer, the more active cation also displayed enhanced potency on irradiation with visible light, making it active at nanomolar concentrations. Using the intrinsic luminescence of the cations, their cellular uptake was investigated in more detail, revealing that the active compound is more readily internalized than its less lipophilic analogue. Colocalization studies with established cell probes reveal that the active cation predominantly localizes within lysosomes and that irradiation leads to the disruption of mitochondrial structure and function. Stimulated emission depletion (STED) nanoscopy and transmission electron microscopy (TEM) imaging reveal that treatment results in distinct lysosomal swelling and extensive cellular vacuolization. Further imaging-based studies confirm that treatment with the active cation induces lysosomal membrane permeabilization, which triggers lysosome-dependent cell-death due to both necrosis and caspase-dependent apoptosis. A preliminary toxicity screen in the Galleria melonella animal model was carried out on both cations and revealed no detectable toxicity up to concentrations of 80 mg/kg. Taken together, these studies indicate that this class of synthetically easy-to-access photoactive compounds offers potential as novel therapeutic leads.


Assuntos
Antineoplásicos , Cátions , Fenazinas , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Cátions/química , Cátions/farmacologia , Fenazinas/química , Fenazinas/farmacologia , Lisossomos/metabolismo , Lisossomos/efeitos dos fármacos , Células HEK293 , Apoptose/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Linhagem Celular Tumoral , Animais , Nanomedicina Teranóstica , Estrutura Molecular
2.
Dalton Trans ; 53(17): 7282-7291, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38466178

RESUMO

Transition metal complexes containing the qtpy ligand (2':4,4'':4',4'''-quaterpyridyl) are known to be DNA intercalators or minor groove binders. In this study, new tricationic iridium(III) complexes of qtpy are reported. Both [Ir(bpy)2(qtpy)]3+1 and [Ir(phen)2(qtpy)]3+2 display good water solubility as chloride salts. The complexes possess high-energy excited states, which are quenched in the presence of duplex DNA and even by the mononucleotides guanosine monophosphate and adenosine monophosphate. Further studies reveal that although the complexes bind to quadruplex DNA, they display a preference for duplex structures, which are bound with an order of magnitude higher affinities than their isostructural dicationic RuII-analogues. Detailed molecular dynamics simulations confirm that the complexes are groove binders through the insertion of, predominantly, the qtpy ligand into the minor groove. Photoirradiation of 1 in the presence of plasmid DNA confirms that this class of complexes can function as synthetic photonucleases by cleaving DNA.


Assuntos
Complexos de Coordenação , DNA , Irídio , Irídio/química , DNA/química , DNA/metabolismo , Complexos de Coordenação/química , Complexos de Coordenação/síntese química , Clivagem do DNA , Simulação de Dinâmica Molecular , Ligantes , Estrutura Molecular
3.
J Med Chem ; 66(10): 6922-6937, 2023 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-37185020

RESUMO

Synergistic drug combinations can extend the use of poly(ADP-ribose) polymerase inhibitors (PARPi) such as Olaparib to BRCA-proficient tumors and overcome acquired or de novo drug resistance. To identify new synergistic combinations for PARPi, we screened a "micro-library" comprising a mix of commercially available drugs and DNA-binding ruthenium(II) polypyridyl complexes (RPCs) for Olaparib synergy in BRCA-proficient triple-negative breast cancer cells. This identified three hits: the natural product Curcumin and two ruthenium(II)-rhenium(I) polypyridyl metallomacrocycles. All combinations identified were effective in BRCA-proficient breast cancer cells, including an Olaparib-resistant cell line, and spheroid models. Mechanistic studies indicated that synergy was achieved via DNA-damage enhancement and resultant apoptosis. Combinations showed low cytotoxicity toward non-malignant breast epithelial cells and low acute and developmental toxicity in zebrafish embryos. This work identifies RPC metallomacrocycles as a novel class of agents for cancer combination therapy and provides a proof of concept for the inclusion of metallocompounds within drug synergy screens.


Assuntos
Neoplasias Ovarianas , Rutênio , Humanos , Animais , Feminino , Rutênio/farmacologia , Rutênio/uso terapêutico , Peixe-Zebra , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Neoplasias Ovarianas/tratamento farmacológico , Ftalazinas/farmacologia , Ftalazinas/uso terapêutico , DNA , Linhagem Celular Tumoral
4.
Acta Crystallogr E Crystallogr Commun ; 79(Pt 4): 356-360, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-37057001

RESUMO

The title compound, 2,2':4,4'':4',4'''-quaterpyridine (Qtpy), C20H14N4, crystallizes in the triclinic P space group and has half of the mol-ecule in the asymmetric unit, corresponding to 4,4'-bi-pyridine (4,4'-bpy) that serves as the building block for the mol-ecule. C4,4'-bpy-N-C4,4'-bpy and/or N-C4,4'-bpy-C4,4'-bpy bond-angle parameters show that the 4,4'-bpy ligands are highly rigid, displaying values lower than the linear bond angle of 180°. In the crystal, the 4,4'-bpy units are seen to be facing each other in relatively close proximity. The most important inter-actions on the Hirshfeld Surface of the compound are C-H⋯N/H⋯N-C inter-actions (constituting 10.6% and 7.6% of the total surface).

5.
Chemistry ; 29(34): e202300617, 2023 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-37013945

RESUMO

The synthesis of a new heterodinuclear ReI RuII metallointercalator containing RuII (dppz) and ReI (dppn) moieties is reported. Cell-free studies reveal that the complex has similar photophysical properties to its homoleptic M(dppz) analogue and it also binds to DNA with a similar affinity. However, the newly reported complex has very different in-cell properties to its parent. In complete contrast to the homoleptic system, the RuII (dppz)/ReI (dppn) complex is not intrinsically cytotoxic but displays appreciable phototoxic, despite both complexes displaying very similar quantum yields for singlet oxygen sensitization. Optical microscopy suggests that the reason for these contrasting biological effects is that whereas the homoleptic complex localises in the nuclei of cells, the RuII (dppz)/ReI (dppn) complex preferentially accumulates in mitochondria. These observations illustrate how even small structural changes in metal based therapeutic leads can modulate their mechanism of action.


Assuntos
Compostos Organometálicos , Rutênio , Luminescência , Fototerapia , Metais , DNA/química , Oxigênio Singlete/química , Rutênio/química , Compostos Organometálicos/química
6.
RSC Med Chem ; 14(1): 65-73, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36755639

RESUMO

Due to the poor prognosis of metastatic cancers, there is a clinical need for agents with anti-metastatic activity. Here we report on the anti-metastatic effect of a previously reported Ru(ii) complex [{(phen)2Ru}2(tpphz)]4+, 14+, that has recently been shown to disrupt actin fiber assembly. In this study, we investigated the anti-migratory effect of +14+ and a close structural analogue+, 24+, on two highly invasive, metastatic human melanoma cell lines. Laser scanning confocal imaging was used to investigate the structure of actin filament and adhesion molecule vinculin and results show disassembly of central actin filaments and focal adhesions. The effect of both compounds on actin filaments was also found to be reversible. As these results revealed that the complexes were cytostatic and produced a significant inhibitory effect on the migration of both melanoma cell lines but not human dermal fibroblasts their effect on 3D-spheroids and a tissue-engineered living skin model were also investigated. These experiments demonstrated that the compounds inhibited the growth and invasiveness of the melanoma-based spheroidal tumor model and both complexes were found to penetrate the epidermis of the skin tissue model and inhibit the invasion of melanoma cells. Taken together, the cytostatic and antimigratory effects of the complexes results in an antimetastatic effect that totally prevent invasion of malignant melanoma into skin tissue.

7.
Chemistry ; 29(11): e202203555, 2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36420820

RESUMO

In previous studies we have described the therapeutic action of luminescent dinuclear ruthenium(II) complexes based on the tetrapyridylphenazine, tpphz, bridging ligand on pathogenic strains of Escherichia coli and Enterococcus faecalis. Herein, the antimicrobial activity of the complex against pernicious Gram-negative ESKAPE pathogenic strains of Acinetobacter baumannii (AB12, AB16, AB184 and AB210) and Pseudomonas aeruginosa (PA2017, PA_ 007_ IMP and PA_ 004_ CRCN) are reported. Estimated minimum inhibitory concentrations and minimum bactericidal concentrations for the complexes revealed the complex shows potent activity against all A. baumannii strains, in both glucose defined minimal media and standard nutrient rich Mueller-Hinton-II. Although the activity was lower in P. aureginosa, a moderately high potency was observed and retained in carbapenem-resistant strains. Optical microscopy showed that the compound is rapidly internalized by A. baumannii. As previous reports had revealed the complex exhibited no toxicity in Galleria Mellonella up to concentrations of 80 mg/kg, the ability to clear pathogenic infection within this model was explored. The pathogenic concentrations to the larvae for each bacterium were determined to be≥105 for AB184 and≥103 CFU/mL for PA2017. It was found a single dose of the compound totally cleared a pathogenic A. baumannii infection from all treated G. mellonella within 96 h. Uniquely, in these conditions thanks to the imaging properties of the complex the clearance of the bacteria within the hemolymph of G. mellonella could be directly visualized through both optical and transmission electron microscopy.


Assuntos
Acinetobacter baumannii , Mariposas , Rutênio , Animais , Antibacterianos/farmacologia , Medicina de Precisão , Mariposas/microbiologia , Escherichia coli , Testes de Sensibilidade Microbiana
8.
Chem Soc Rev ; 51(24): 9882-9916, 2022 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-36420611

RESUMO

Following an overview of the approaches and techniques used to acheive super-resolution microscopy, this review presents the advantages supplied by nanoparticle based probes for these applications. The various clases of nanoparticles that have been developed toward these goals are then critically described and these discussions are illustrated with a variety of examples from the recent literature.


Assuntos
Terapia de Alvo Molecular , Nanopartículas , Microscopia de Fluorescência/métodos
9.
Angew Chem Int Ed Engl ; 61(27): e202117449, 2022 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-35416386

RESUMO

The dinuclear RuII complex [(Ru(phen)2 )2 (tpphz)]4+ (phen=1,10-phenanthroline, tpphz=tetrapyridophenazine) "RuRuPhen" blocks the transformation of G-actin monomers to F-actin filaments with no disassembly of pre-formed F-actin. Molecular docking studies indicate multiple RuRuPhen molecules bind to the surface of G-actin but not the binding pockets of established actin polymerisation inhibitors. In cells, addition of RuRuPhen causes rapid disruption to actin stress fibre organisation, compromising actomyosin contractility and cell motility; due to this effect RuRuPhen interferes with late-stage cytokinesis. Immunofluorescent microscopy reveals that RuRuPhen causes cytokinetic abscission failure by interfering with endosomal sorting complexes required for transport (ESCRT) complex recruitment.


Assuntos
Citocinese , Rutênio , Citoesqueleto de Actina , Actinas/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Simulação de Acoplamento Molecular , Rutênio/metabolismo , Rutênio/farmacologia
10.
Chemistry ; 28(5): e202102465, 2022 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-34755915

RESUMO

The interaction of the self-assembled trinuclear ruthenium bowl 13+ , that displays three other accessible oxidation states, with oxo-anions is investigated. Using a combination of NMR and electrochemical experimental data, estimates of the binding affinities of 14+ , 15+ , and 16+ for both halide and oxo-anions were derived. This analysis revealed that, across the range of oxidation states of the host, both high anion binding affinities (>109  M-1 for specific guests bound to 16+ ) and high selectivities (a range of >107  M-1 ) were observed. As the crystal structure of binding of the hexafluorophosphate anion revealed that the host has two potential binding sites (named the α and ß pockets), the host-guest properties of both putative binding sites of the bowl, in all of its four oxidation states, were investigated through detailed quantum-based computational studies. These studies revealed that, due to the interplay of ion-ion interactions, charge-assisted hydrogen-bonding and anion-π interactions, binding to the α pocket is generally preferred, except for the case of the relatively large and lipophilic hexafluorophosphate anionic guest and the host in the highest oxidation states, where the ß pocket becomes relatively favourable. This analysis confirms that host-guest interactions involving structurally complex supramolecular architectures are driven by a combination of non-covalent interactions and, even in the case of charged binding pairs, simple ion-ion interactions alone cannot accurately define these recognition processes.


Assuntos
Ânions , Sítios de Ligação , Ligação de Hidrogênio , Oxirredução
11.
Angew Chem Weinheim Bergstr Ger ; 134(27): e202117449, 2022 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38505667

RESUMO

The dinuclear RuII complex [(Ru(phen)2)2(tpphz)]4+ (phen=1,10-phenanthroline, tpphz=tetrapyridophenazine) "RuRuPhen" blocks the transformation of G-actin monomers to F-actin filaments with no disassembly of pre-formed F-actin. Molecular docking studies indicate multiple RuRuPhen molecules bind to the surface of G-actin but not the binding pockets of established actin polymerisation inhibitors. In cells, addition of RuRuPhen causes rapid disruption to actin stress fibre organisation, compromising actomyosin contractility and cell motility; due to this effect RuRuPhen interferes with late-stage cytokinesis. Immunofluorescent microscopy reveals that RuRuPhen causes cytokinetic abscission failure by interfering with endosomal sorting complexes required for transport (ESCRT) complex recruitment.

12.
J Am Chem Soc ; 143(48): 20442-20453, 2021 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-34808044

RESUMO

With the aim of developing photostable near-infrared cell imaging probes, a convenient route to the synthesis of heteroleptic OsII complexes containing the Os(TAP)2 fragment is reported. This method was used to synthesize the dinuclear OsII complex, [{Os(TAP)2}2tpphz]4+ (where tpphz = tetrapyrido[3,2-a:2',3'-c:3″,2''-h:2‴,3'''-j]phenazine and TAP = 1,4,5,8- tetraazaphenanthrene). Using a combination of resonance Raman and time-resolved absorption spectroscopy, as well as computational studies, the excited state dynamics of the new complex were dissected. These studies revealed that, although the complex has several close lying excited states, its near-infrared, NIR, emission (λmax = 780 nm) is due to a low-lying Os → TAP based 3MCLT state. Cell-based studies revealed that unlike its RuII analogue, the new complex is neither cytotoxic nor photocytotoxic. However, as it is highly photostable as well as live-cell permeant and displays NIR luminescence within the biological optical window, its properties make it an ideal probe for optical microscopy, demonstrated by its use as a super-resolution NIR STED probe for nuclear DNA.


Assuntos
Complexos de Coordenação/química , DNA/análise , Substâncias Luminescentes/química , Animais , Bovinos , Linhagem Celular Tumoral , Complexos de Coordenação/síntese química , Complexos de Coordenação/toxicidade , Humanos , Substâncias Luminescentes/síntese química , Substâncias Luminescentes/toxicidade , Microscopia Confocal , Osmio/química , Osmio/toxicidade
13.
Angew Chem Int Ed Engl ; 60(38): 20952-20959, 2021 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-34378843

RESUMO

Threading intercalators bind DNA with high affinities. Here, we describe single-molecule studies on a cell-permeant luminescent dinuclear ruthenium(II) complex that has been previously shown to thread only into short, unstable duplex structures. Using optical tweezers and confocal microscopy, we show that this complex threads and locks into force-extended duplex DNA in a two-step mechanism. Detailed kinetic studies reveal that an individual stereoisomer of the complex exhibits the highest binding affinity reported for such a mono-intercalator. This stereoisomer better preserves the biophysical properties of DNA than the widely used SYTOX Orange. Interestingly, threading into torsionally constrained DNA decreases dramatically, but is rescued on negatively supercoiled DNA. Given the "light-switch" properties of this complex on binding DNA, it can be readily used as a long-lived luminescent label for duplex or negatively supercoiled DNA through a unique "load-and-lock" protocol.


Assuntos
Complexos de Coordenação/química , Sondas de DNA/química , DNA/análise , Rutênio/química , Estrutura Molecular
14.
ACS Pharmacol Transl Sci ; 4(1): 168-178, 2021 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-33615170

RESUMO

Increasing concern over rising levels of antibiotic resistance among pathogenic bacteria has prompted significant research into developing efficacious alternatives to antibiotic treatment. Previously, we have reported on the therapeutic activity of a dinuclear ruthenium(II) complex against pathogenic, multi-drug-resistant bacterial pathogens. Herein, we report that the solubility properties of this lead are comparable to those exhibited by orally available therapeutics that in comparison to clinically relevant antibiotics it induces very slow evolution of resistance in the uropathogenic, therapeutically resistant, E. coli strain EC958, and this resistance was lost when exposure to the compound was temporarily removed. With the aim of further investigating the mechanism of action of this compound, the regulation of nine target genes relating to the membrane, DNA damage, and other stress responses provoked by exposure to the compound was also studied. This analysis confirmed that the compound causes a significant transcriptional downregulation of genes involved in membrane transport and the tricarboxylic acid cycle. By contrast, expression of the chaperone protein-coding gene, spy, was significantly increased suggesting a requirement for repair of damaged proteins in the region of the outer membrane. The complex was also found to display activity comparable to that in E. coli in a range of other therapeutically relevant Gram-negative pathogens.

15.
Chem Commun (Camb) ; 56(57): 7945-7948, 2020 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-32531009

RESUMO

Two-photon active mitochondriotropic lanthanide nanorods for high resolution fluorescence imaging. The presence of Gd in the nanorods also enabled us to utilize this material as a T1-T2 dual-mode contrast reagent for recording magnetic resonance images of the mouse brain.


Assuntos
Encéfalo/diagnóstico por imagem , Elementos da Série dos Lantanídeos/química , Imageamento por Ressonância Magnética , Mitocôndrias/química , Imagem Multimodal , Nanotubos/química , Animais , Camundongos , Camundongos Endogâmicos C57BL , Fótons
16.
Chem Sci ; 11(1): 70-79, 2020 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-32110358

RESUMO

In previous studies we reported that specific dinuclear RuII complexes are particularly active against pathogenic Gram-negative bacteria and, unusually for this class of compounds, appeared to display lowered activity against Gram-positive bacteria. With the aim of identifying resistance mechanisms specific to Gram-positive bacteria, the uptake and antimicrobial activity of the lead complex against Staphylococcus aureus SH1000 and other isolates, including MRSA was investigated. This revealed differential, strain specific, sensitivity to the complex. Exploiting the inherent luminescent properties of the RuII complex, super-resolution STED nanoscopy was used to image its initial interaction with S. aureus and confirm its cellular internalization. Membrane damage assays and transmission electron microscopy confirm that the complex disrupts the bacterial membrane structure before internalization, which ultimately results in a small amount of DNA damage. A known resistance mechanism against cationic antimicrobials in Gram-positive bacteria involves increased expression of the mprF gene as this results in an accumulation of positively charged lysyl-phosphatidylglycerol on the outer leaflet of the cytoplasmic membrane that electrostatically repel cationic species. Consistent with this model, it was found that an mprF deficient strain was particularly susceptible to treatment with the lead complex. More detailed co-staining studies also revealed that the complex was more active in S. aureus strains missing, or with altered, wall teichoic acids.

17.
Chem Commun (Camb) ; 56(10): 1464-1480, 2020 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-31967621

RESUMO

This review discusses the advantages of using luminescent d6-transition-metal complexes as cell probes for optical microscopy. In particular it focusses on the Thomas group's use of specific complexes as "building blocks" toward the construction of biomolecular binding substrates, with DNA being a particular target. Using this approach, a range of new imaging probes for conventional optical microscopy, nanoscopy and transmission electron microscopy have been identified. Through selection of specific metal centres and by substitution of coordinated ligands we illustrate how new chemotherapeutics, photo-therapeutics, and theranostics have been identified and developed from the original architectures.


Assuntos
Complexos de Coordenação/química , DNA/química , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Apoptose/efeitos dos fármacos , Bactérias/efeitos dos fármacos , Meios de Contraste/química , Meios de Contraste/metabolismo , Complexos de Coordenação/metabolismo , Complexos de Coordenação/toxicidade , DNA/metabolismo , Humanos , Sondas Moleculares/química , Sondas Moleculares/metabolismo , Nanomedicina Teranóstica
18.
Chem Sci ; 11(33): 8828-8838, 2020 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-34123136

RESUMO

Six luminescent, mononuclear ruthenium(ii) complexes based on the tetrapyridophenazine (tpphz) and dipyridophenazine (dppz) ligands are reported. The therapeutic activities of the complexes against Gram-negative bacteria (E. coli, A. baumannii, P. aeruginosa) and Gram-positive bacteria (E. faecalis and S. aureus) including pathogenic multi- and pan-drug resistant strains were assessed. Estimated minimum inhibitory and bactericidal concentrations show the activity of the lead compound is comparable to ampicillin and oxacillin in therapeutically sensitive strains and this activity was retained in resistant strains. Unlike related dinuclear analogues the lead compound does not damage bacterial membranes but is still rapidly taken up by both Gram-positive and Gram-negative bacteria in a glucose independent manner. Direct imaging of the complexes through super-resolution nanoscopy and transmission electron microscopy reveals that once internalized the complexes' intracellular target for both Gram-negative and Gram-positive strains is bacterial DNA. Model toxicity screens showed the compound is non-toxic to Galleria mellonella even at exposure concentrations that are orders of magnitude higher than the bacterial MIC.

19.
Chem Sci ; 11(33): 8928-8935, 2020 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-34123147

RESUMO

Cellular uptake, luminescence imaging and antimicrobial activity against clinically relevant methicillin-resistant S. aureus (MRSA) bacteria are reported. The osmium(ii) complexes [Os(N^N)3]2+ (N^N = 1-benzyl-4-(pyrid-2-yl)-1,2,3-triazole (1 2+); 1-benzyl-4-(pyrimidin-2-yl)-1,2,3-triazole (2 2+); 1-benzyl-4-(pyrazin-2-yl)-1,2,3-triazole (3 2+)) were prepared and isolated as the chloride salts of their meridional and facial isomers. The complexes display prominent spin-forbidden ground state to triplet metal-to-ligand charge transfer (3MLCT) state absorption bands enabling excitation as low as 600 nm for fac/mer-3 2+ and observation of emission in aqueous solution in the deep-red/near-IR regions of the spectrum. Cellular uptake studies within MRSA cells show antimicrobial activity for 1 2+ and 2 2+ with greater toxicity for the meridional isomers in each case and mer-1 2+ showing the greatest potency (32 µg mL-1 in defined minimal media). Super-resolution imaging experiments demonstrate binding of mer- and fac-1 2+ to bacterial DNA with high Pearson's colocalisation coefficients (up to 0.95 using DAPI). Phototoxicity studies showed the complexes exhibited a higher antimicrobial activity upon irradiation with light.

20.
Chem Sci ; 11(33): 8936-8944, 2020 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-33815738

RESUMO

Theranostic radionuclides that emit Auger electrons (AE) can generate highly localised DNA damage and the accompanying gamma ray emission can be used for single-photon emission computed tomography (SPECT) imaging. Mismatched DNA base pairs (mismatches) are DNA lesions that are abundant in cells deficient in MMR (mismatch mediated repair) proteins. This form of genetic instability is prevalent in the MMR-deficient subset of colorectal cancers and is a potential target for AE radiotherapeutics. Herein we report the synthesis of a mismatch DNA binding bis-ruthenium(ii) dipyridophenazine (dppz) complex that can be radiolabelled with the Auger electron emitting radionuclide indium-111 (111In). Greater stabilisation accompanied by enhanced MLCT (metal to ligand charge-transfer) luminescence of both the bis-Ru(dppz) chelator and non-radioactive indium-loaded complex was observed in the presence of a TT mismatch-containing duplex compared to matched DNA. The radioactive construct [111In]In-bisRu(dppz) ([111In][In-2]4+) targets cell nuclei and is radiotoxic towards MMR-deficient human colorectal cancer cells showing substantially less detrimental effects in a paired cell line with restored MMR function. Additional cell line studies revealed that [111In][In-2]4+ is preferentially radiotoxic towards MMR-deficient colorectal cancer cells accompanied by increased DNA damage due to 111In decay. The biodistribution of [111In][In-2]4+ in live mice was demonstrated using SPECT. These results illustrate how a Ru(ii) polypyridyl complex can incorporate mismatch DNA binding and radiometal chelation in a single molecule, generating a DNA-targeting AE radiopharmaceutical that displays selective radiotoxicity towards MMR-deficient cancer cells and is compatible with whole organism SPECT imaging.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA