Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Med Genet ; 61(6): 595-604, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38408845

RESUMO

BACKGROUND: Primary ciliary dyskinesia (PCD) is a rare airway disorder caused by defective motile cilia. Only male patients have been reported with pathogenic mutations in X-linked DNAAF6, which result in the absence of ciliary dynein arms, whereas their heterozygous mothers are supposedly healthy. Our objective was to assess the possible clinical and ciliary consequences of X-chromosome inactivation (XCI) in these mothers. METHODS: XCI patterns of six mothers of male patients with DNAAF6-related PCD were determined by DNA-methylation studies and compared with their clinical phenotype (6/6 mothers), as well as their ciliary phenotype (4/6 mothers), as assessed by immunofluorescence and high-speed videomicroscopy analyses. The mutated X chromosome was tracked to assess the percentage of cells with a normal inactivated DNAAF6 allele. RESULTS: The mothers' phenotypes ranged from absence of symptoms to mild/moderate or severe airway phenotypes, closely reflecting their XCI pattern. Analyses of the symptomatic mothers' airway ciliated cells revealed the coexistence of normal cells and cells with immotile cilia lacking dynein arms, whose ratio closely mirrored their XCI pattern. CONCLUSION: This study highlights the importance of searching for heterozygous pathogenic DNAAF6 mutations in all female relatives of male PCD patients with a DNAAF6 defect, as well as in females consulting for mild chronic respiratory symptoms. Our results also demonstrate that about one-third-ranging from 20% to 50%-normal ciliated airway cells sufficed to avoid severe PCD, a result paving the way for gene therapy.


Assuntos
Cílios , Inativação do Cromossomo X , Adolescente , Adulto , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Cílios/patologia , Cílios/genética , Transtornos da Motilidade Ciliar/genética , Transtornos da Motilidade Ciliar/patologia , Metilação de DNA/genética , Dineínas/genética , Síndrome de Kartagener/genética , Síndrome de Kartagener/patologia , Mutação , Fenótipo , Inativação do Cromossomo X/genética
2.
Reprod Biomed Online ; 47(5): 103328, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37742467

RESUMO

RESEARCH QUESTION: Do patients presenting with flagella ultrastructural defects as assessed by electron microscopy, and defined within three phenotypes (dysplasia of the fibrous sheath [DFS], primary flagellar dyskinesia [PFD] and non-specific flagellar abnormalities [NSFA]), have decreased chances of success in intracytoplasmic sperm injection (ICSI) or adverse obstetric and neonatal outcomes? DESIGN: Retrospective analysis of 189 ICSI cycles from 80 men with spermatozoa flagellum ultrastructural defects (DFS [n = 16]; PFD [n = 14]; NSFA [n = 50] compared with a control group (n = 97). Cycles were cumulatively analysed. All fresh and frozen embryo transfers resulting from each ICSI attempt were included. The effect of transmission electron microscopy (TEM) phenotype on the main ICSI outcomes was assessed by a multivariate logistic regression combined with a generalized linear mixed model to account for the non-independence of the observations. RESULTS: No predictive value of TEM phenotype was found on the main outcomes of ICSI, namely fertilization rates, pregnancy and delivery rates, and cumulative pregnancy and delivery rates. Cumulative pregnancy rates ranged from 29.0-43.3% in the different TEM phenotype subgroups compared with 36.8% in the control group. Cumulative live birth rates ranged from 24.6-36.7% compared with 31.4% in the control group. No increase was found in miscarriages, preterm births, low birth weights or birth abnormalities. CONCLUSIONS: Data on the cumulative chances of success in ICSI of patients with ultrastructural flagellar defects, a rare cause of male infertility often associated with an underlying genetic cause, are reassuring, as are obstetrical and neonatal outcomes in this population.


Assuntos
Astenozoospermia , Infertilidade Masculina , Gravidez , Recém-Nascido , Feminino , Humanos , Masculino , Injeções de Esperma Intracitoplásmicas/efeitos adversos , Estudos Retrospectivos , Sêmen , Infertilidade Masculina/terapia , Infertilidade Masculina/etiologia , Taxa de Gravidez , Microscopia Eletrônica de Transmissão , Fertilização in vitro
3.
Mol Genet Metab ; 138(1): 106969, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36599257

RESUMO

Phenylketonuria (PKU) is a metabolic disease where Phenylalanine (Phe) rises much above normal levels. Cross-sectional and correlational studies provide valuable information on the importance of maintaining low blood-Phe to achieve good outcomes, but they may be confounded, at least partially, by differences in participant demographics. Moreover, the effect of Phe at older ages is difficult to ascertain because of strong associations between Phe levels across ages. Within-participant studies avoid confounding issues. We have reviewed these studies. We followed PRISMA guidelines to search the literature for studies reporting the impact of Phe changes within participants. Phe was either increased or decreased through diet relaxation/resumption or through pharmacological interventions. Forty-six separate articles reported, singly or in combination, results on cognition (N = 37), well-being (N = 22) and neurophysiological health (N = 14). For all studies, we established, in a binary way, whether a benefit of lower Phe was or was not demonstrated and compared numbers showing benefit versus a null or negative outcome. We then analyzed whether critical parameters (e.g., length of the study/condition for the change, size of Phe change achieved) influenced presence or absence of benefit. For a subset of studies that reported quantitative cognitive outcomes, we carried out a meta-analysis to estimate the size of change in cognitive performance associated with a change in Phe and its significance. There were significantly more studies with benefits than no benefits, both for cognitive and well-being outcomes, and a trend in this direction for neurophysiological outcomes. The meta-analysis showed a highly significant effect size both overall (0.55) and when studies with adults/adolescents were considered separately (0.57). There was some indication that benefits were easier to demonstrate when differences in Phe were larger and achieved across a longer period, but these effects were not always consistent. These results reinforce results from the literature by demonstrating the importance of lower Phe in children as well as in adolescents and adults, even when confounding factors in group composition are eliminated. The field would benefit from further studies where Phe levels are contrasted within-participants to ascertain how much Phe needs to be changed and for how long to see a difference and which measures demonstrate a difference (e.g., which cognitive tasks).


Assuntos
Neurofisiologia , Fenilcetonúrias , Adulto , Criança , Adolescente , Humanos , Estudos Transversais , Cognição/fisiologia , Fenilcetonúrias/complicações , Fenilalanina
4.
Am J Hum Genet ; 106(2): 153-169, 2020 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-31978331

RESUMO

Cilia and flagella are evolutionarily conserved organelles whose motility relies on the outer and inner dynein arm complexes (ODAs and IDAs). Defects in ODAs and IDAs result in primary ciliary dyskinesia (PCD), a disease characterized by recurrent airway infections and male infertility. PCD mutations in assembly factors have been shown to cause a combined ODA-IDA defect, affecting both cilia and flagella. We identified four loss-of-function mutations in TTC12, which encodes a cytoplasmic protein, in four independent families in which affected individuals displayed a peculiar PCD phenotype characterized by the absence of ODAs and IDAs in sperm flagella, contrasting with the absence of only IDAs in respiratory cilia. Analyses of both primary cells from individuals carrying TTC12 mutations and human differentiated airway cells invalidated for TTC12 by a CRISPR-Cas9 approach revealed an IDA defect restricted to a subset of single-headed IDAs that are different in flagella and cilia, whereas TTC12 depletion in the ciliate Paramecium tetraurelia recapitulated the sperm phenotype. Overall, our study, which identifies TTC12 as a gene involved in PCD, unveils distinct dynein assembly mechanisms in human motile cilia versus flagella.


Assuntos
Cílios/patologia , Transtornos da Motilidade Ciliar/etiologia , Dineínas/metabolismo , Flagelos/patologia , Mutação , Proteínas/genética , Cauda do Espermatozoide/patologia , Adulto , Axonema , Criança , Cílios/metabolismo , Transtornos da Motilidade Ciliar/patologia , Dineínas/genética , Feminino , Flagelos/metabolismo , Homozigoto , Humanos , Infertilidade Masculina/etiologia , Infertilidade Masculina/patologia , Masculino , Pessoa de Meia-Idade , Linhagem , Fenótipo , Motilidade dos Espermatozoides , Cauda do Espermatozoide/metabolismo , Adulto Jovem
5.
Am J Hum Genet ; 105(1): 198-212, 2019 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-31178125

RESUMO

Motile cilia and sperm flagella share an evolutionarily conserved axonemal structure. Their structural and/or functional defects are associated with primary ciliary dyskinesia (PCD), a genetic disease characterized by chronic respiratory-tract infections and in which most males are infertile due to asthenozoospermia. Among the well-characterized axonemal protein complexes, the outer dynein arms (ODAs), through ATPase activity of their heavy chains (HCs), play a major role for cilia and flagella beating. However, the contribution of the different HCs (γ-type: DNAH5 and DNAH8 and ß-type: DNAH9, DNAH11, and DNAH17) in ODAs from both organelles is unknown. By analyzing five male individuals who consulted for isolated infertility and displayed a loss of ODAs in their sperm cells but not in their respiratory cells, we identified bi-allelic mutations in DNAH17. The isolated infertility phenotype prompted us to compare the protein composition of ODAs in the sperm and ciliary axonemes from control individuals. We show that DNAH17 and DNAH8, but not DNAH5, DNAH9, or DNAH11, colocalize with α-tubulin along the sperm axoneme, whereas the reverse picture is observed in respiratory cilia, thus explaining the phenotype restricted to sperm cells. We also demonstrate the loss of function associated with DNAH17 mutations in two unrelated individuals by performing immunoblot and immunofluorescence analyses on sperm cells; these analyses indicated the absence of DNAH17 and DNAH8, whereas DNAH2 and DNALI, two inner dynein arm components, were present. Overall, this study demonstrates that mutations in DNAH17 are responsible for isolated male infertility and provides information regarding ODA composition in human spermatozoa.


Assuntos
Astenozoospermia/complicações , Dineínas do Axonema/genética , Infertilidade Masculina/etiologia , Mutação , Espermatozoides/patologia , Adulto , Humanos , Infertilidade Masculina/metabolismo , Infertilidade Masculina/patologia , Masculino , Linhagem , Fenótipo , Espermatozoides/metabolismo
6.
Kidney Int ; 96(2): 350-362, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30928021

RESUMO

Inflammation is involved in the pathogenesis of many disorders. However, the underlying mechanisms are often unknown. Here, we test whether cystinosin, the protein involved in cystinosis, is a critical regulator of galectin-3, a member of the ß-galactosidase binding protein family, during inflammation. Cystinosis is a lysosomal storage disorder and, despite ubiquitous expression of cystinosin, the kidney is the primary organ impacted by the disease. Cystinosin was found to enhance lysosomal localization and degradation of galectin-3. In Ctns-/- mice, a mouse model of cystinosis, galectin-3 is overexpressed in the kidney. The absence of galectin-3 in cystinotic mice ameliorates pathologic renal function and structure and decreases macrophage/monocyte infiltration in the kidney of the Ctns-/-Gal3-/- mice compared to Ctns-/- mice. These data strongly suggest that galectin-3 mediates inflammation involved in kidney disease progression in cystinosis. Furthermore, galectin-3 was found to interact with the pro-inflammatory cytokine Monocyte Chemoattractant Protein-1, which stimulates the recruitment of monocytes/macrophages, and proved to be significantly increased in the serum of Ctns-/- mice and also patients with cystinosis. Thus, our findings highlight a new role for cystinosin and galectin-3 interaction in inflammation and provide an additional mechanistic explanation for the kidney disease of cystinosis. This may lead to the identification of new drug targets to delay cystinosis progression.


Assuntos
Sistemas de Transporte de Aminoácidos Neutros/metabolismo , Cistinose/complicações , Síndrome de Fanconi/imunologia , Galectina 3/metabolismo , Inflamação/imunologia , Sistemas de Transporte de Aminoácidos Neutros/genética , Animais , Quimiocina CCL2/imunologia , Quimiocina CCL2/metabolismo , Cistina/metabolismo , Cistinose/imunologia , Cistinose/metabolismo , Cistinose/patologia , Modelos Animais de Doenças , Progressão da Doença , Síndrome de Fanconi/metabolismo , Síndrome de Fanconi/patologia , Feminino , Galectina 3/genética , Humanos , Inflamação/metabolismo , Inflamação/patologia , Túbulos Renais Proximais/imunologia , Túbulos Renais Proximais/patologia , Lisossomos/metabolismo , Macrófagos/imunologia , Masculino , Camundongos , Camundongos Knockout , Monócitos/imunologia , Proteólise
7.
Int J Mol Sci ; 20(6)2019 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-30893823

RESUMO

Monoclonal antibodies (mAbs) are promising therapies to treat airway chronic inflammatory disease (asthma or nasal polyps). To date, no study has specifically assessed, in vitro, the potential function of neonatal Fc receptor (FcRn) in IgG transcytosis through the human nasal airway epithelium. The objective of this study was to report the in vitro expression and function of FcRn in nasal human epithelium. FcRn expression was studied in an air⁻liquid interface (ALI) primary culture model of human nasal epithelial cells (HNEC) from polyps. FcRn expression was characterized by quantitative RT-PCR, western blot, and immunolabeling. The ability of HNECs to support mAb transcytosis via FcRn was assessed by transcytosis assay. This study demonstrates the expression of FcRn mRNA and protein in HNEC. We report a high expression of FcRn in the cytosol of ciliated, mucus, and basal cells by immunohistochemistry with a higher level of FcRn proteins in differentiated HNEC. We also proved in vitro transepithelial delivery of an IgG1 therapeutic mAb with a dose⁻response curve. This is the first time that FcRn expression and mAb transcytosis has been shown in a model of human nasal respiratory epithelium in vitro. This study is a prerequisite for FcRn-dependent nasal administration of mAbs.


Assuntos
Anticorpos Monoclonais/metabolismo , Sistemas de Liberação de Medicamentos , Células Epiteliais/metabolismo , Antígenos de Histocompatibilidade Classe I/metabolismo , Nariz/citologia , Receptores Fc/metabolismo , Transcitose , Diferenciação Celular , Células HEK293 , Humanos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
8.
Am J Hum Genet ; 104(2): 229-245, 2019 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-30665704

RESUMO

Primary ciliary dyskinesia (PCD) is a genetic disorder in which impaired ciliary function leads to chronic airway disease. Exome sequencing of a PCD subject identified an apparent homozygous frameshift variant, c.887_890delTAAG (p.Val296Glyfs∗13), in exon 5; this frameshift introduces a stop codon in amino acid 308 of the growth arrest-specific protein 2-like 2 (GAS2L2). Further genetic screening of unrelated PCD subjects identified a second proband with a compound heterozygous variant carrying the identical frameshift variant and a large deletion (c.867_∗343+1207del; p.?) starting in exon 5. Both individuals had clinical features of PCD but normal ciliary axoneme structure. In this research, using human nasal cells, mouse models, and X.laevis embryos, we show that GAS2L2 is abundant at the apical surface of ciliated cells, where it localizes with basal bodies, basal feet, rootlets, and actin filaments. Cultured GAS2L2-deficient nasal epithelial cells from one of the affected individuals showed defects in ciliary orientation and had an asynchronous and hyperkinetic (GAS2L2-deficient = 19.8 Hz versus control = 15.8 Hz) ciliary-beat pattern. These results were recapitulated in Gas2l2-/- mouse tracheal epithelial cell (mTEC) cultures and in X. laevis embryos treated with Gas2l2 morpholinos. In mice, the absence of Gas2l2 caused neonatal death, and the conditional deletion of Gas2l2 impaired mucociliary clearance (MCC) and led to mucus accumulation. These results show that a pathogenic variant in GAS2L2 causes a genetic defect in ciliary orientation and impairs MCC and results in PCD.


Assuntos
Cílios/patologia , Transtornos da Motilidade Ciliar/genética , Transtornos da Motilidade Ciliar/fisiopatologia , Proteínas dos Microfilamentos/deficiência , Proteínas Associadas aos Microtúbulos/deficiência , Proteínas de Xenopus/deficiência , Animais , Transtornos da Motilidade Ciliar/patologia , Modelos Animais de Doenças , Éxons/genética , Feminino , Deleção de Genes , Genes Letais , Humanos , Masculino , Camundongos , Camundongos Knockout , Proteínas dos Microfilamentos/genética , Proteínas Associadas aos Microtúbulos/genética , Fenótipo , Rotação , Xenopus/embriologia , Xenopus/genética , Proteínas de Xenopus/genética
10.
Am J Hum Genet ; 103(6): 984-994, 2018 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-30471717

RESUMO

Motile cilia move body fluids and gametes and the beating of cilia lining the airway epithelial surfaces ensures that they are kept clear and protected from inhaled pathogens and consequent respiratory infections. Dynein motor proteins provide mechanical force for cilia beating. Dynein mutations are a common cause of primary ciliary dyskinesia (PCD), an inherited condition characterized by deficient mucociliary clearance and chronic respiratory disease coupled with laterality disturbances and subfertility. Using next-generation sequencing, we detected mutations in the ciliary outer dynein arm (ODA) heavy chain gene DNAH9 in individuals from PCD clinics with situs inversus and in one case male infertility. DNAH9 and its partner heavy chain DNAH5 localize to type 2 ODAs of the distal cilium and in DNAH9-mutated nasal respiratory epithelial cilia we found a loss of DNAH9/DNAH5-containing type 2 ODAs that was restricted to the distal cilia region. This confers a reduced beating frequency with a subtle beating pattern defect affecting the motility of the distal cilia portion. 3D electron tomography ultrastructural studies confirmed regional loss of ODAs from the distal cilium, manifesting as either loss of whole ODA or partial loss of ODA volume. Paramecium DNAH9 knockdown confirms an evolutionarily conserved function for DNAH9 in cilia motility and ODA stability. We find that DNAH9 is widely expressed in the airways, despite DNAH9 mutations appearing to confer symptoms restricted to the upper respiratory tract. In summary, DNAH9 mutations reduce cilia function but some respiratory mucociliary clearance potential may be retained, widening the PCD disease spectrum.


Assuntos
Dineínas do Axonema/genética , Cílios/genética , Dineínas/genética , Mutação/genética , Situs Inversus/genética , Adolescente , Sequência de Aminoácidos , Criança , Pré-Escolar , Transtornos da Motilidade Ciliar/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Masculino , Sistema Respiratório/patologia , Alinhamento de Sequência
11.
Org Lett ; 20(8): 2441-2444, 2018 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-29624060

RESUMO

Various 1,2-, 1,3-, and 1,4-substituted cyclic iodides or bromides undergo highly diastereoselective cross-couplings (diastereoselectivity (dr) up to 99:1) with a range of alkynylzinc pivalates, using CoCl2 (20 mol %) and trans- N, N, N', N'-tetramethylcyclohexane-1,2-diamine as a catalytic system.

12.
Hum Mol Genet ; 27(7): 1196-1211, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29365104

RESUMO

Motile cilia and sperm flagella share an extremely conserved microtubule-based cytoskeleton, called the axoneme, which sustains beating and motility of both organelles. Ultra-structural and/or functional defects of this axoneme are well-known to cause primary ciliary dyskinesia (PCD), a disorder characterized by recurrent respiratory tract infections, chronic otitis media, situs inversus, male infertility and in most severe cases, hydrocephalus. Only recently, mutations in genes encoding axonemal proteins with preferential expression in the testis were identified in isolated male infertility; in those cases, individuals displayed severe asthenozoospermia due to Multiple Morphological Abnormalities of the sperm Flagella (MMAF) but not PCD features. In this study, we performed genetic investigation of two siblings presenting MMAF without any respiratory PCD features, and we report the identification of the c.2018T > G (p.Leu673Pro) transversion in AK7, encoding an adenylate kinase, expressed in ciliated tissues and testis. By performing transcript and protein analyses of biological samples from individual carrying the transversion, we demonstrate that this mutation leads to the loss of AK7 protein in sperm cells but not in respiratory ciliated cells, although both cell types carry the mutated transcript and no tissue-specific isoforms were detected. This work therefore, supports the notion that proteins shared by both cilia and sperm flagella may have specific properties and/or function in each organelle, in line with the differences in their mode of assembly and organization. Overall, this work identifies a novel genetic cause of asthenozoospermia due to MMAF and suggests that in humans, more deleterious mutations of AK7 might induce PCD.


Assuntos
Adenilato Quinase/genética , Transtornos da Motilidade Ciliar/genética , Homozigoto , Infertilidade Masculina/genética , Mutação de Sentido Incorreto , Cauda do Espermatozoide , Adenilato Quinase/metabolismo , Adulto , Transtornos da Motilidade Ciliar/enzimologia , Transtornos da Motilidade Ciliar/patologia , Humanos , Infertilidade Masculina/enzimologia , Infertilidade Masculina/patologia , Masculino
13.
Org Lett ; 19(14): 3847-3850, 2017 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-28696711

RESUMO

A catalytic system consisting of CoCl2·2LiCl and TMEDA enables the cross-coupling of various electron-poor aryl and heteroaryl halides with various alkynylzinc pivalates. Coupling with alkenyl halides proceeds with retention of configuration.

14.
PLoS One ; 12(4): e0175336, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28403163

RESUMO

Inflammasomes are multiprotein complexes nucleating around an NLR (Nucleotide-binding domain and Leucine-rich Repeat containing protein), which regulate the secretion of the pro-inflammatory interleukin (IL)-1ß and IL-18 cytokines. Monocytes and macrophages, the main cells expressing the inflammasome genes, adapt to their surrounding microenvironment by a phenotypic polarization towards a pro-inflammatory M1 phenotype that promotes inflammation or an anti-inflammatory M2 phenotype important for resolution of inflammation. Despite the importance of inflammasomes in health and disease, little is known about inflammasome gene expression in relevant human cells and the impact of monocyte and macrophage polarization in inflammasome gene expression. We examined the expression of several members of the NLR, caspase and cytokine family, and we studied the activation of the well-described NLRP3 inflammasome in an experimental model of polarized human primary monocytes and monocyte-derived macrophages (M1/M2 phenotypes) before and after activation with LPS, a well-characterized microbial pattern used in inflammasome activation studies. Our results show that the differentiation of monocytes to macrophages alters NLR expression. Polarization using IFN-γ (M1 phenotype), induces among the NLRs studied, only the expression of NOD2. One of the key results of our study is that the induction of NLRP3 expression by LPS is inhibited in the presence of IL-4+IL-13 (M2 phenotype) at both mRNA and protein level in monocytes and macrophages. Unlike caspase-3, the expression of inflammasome-related CASP1 (encodes caspase-1) and CASP4 (encodes caspase-4) is up-regulated in M1 but not in M2 cells. Interestingly, the presence of LPS marginally influenced IL18 mRNA expression and secretion, unlike its impact on IL1B. Our data provide the basis for a better understanding of the role of different inflammasomes within a given environment (M1 and M2) in human cells and their impact in the pathophysiology of several important inflammatory disorders.


Assuntos
Inflamassomos/imunologia , Macrófagos/imunologia , Monócitos/imunologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/imunologia , Proteínas NLR/imunologia , Proteína Adaptadora de Sinalização NOD2/imunologia , Caspases/genética , Caspases/imunologia , Polaridade Celular , Células Cultivadas , Citocinas/genética , Citocinas/imunologia , Regulação da Expressão Gênica , Humanos , Inflamassomos/genética , Lipopolissacarídeos/imunologia , Macrófagos/citologia , Macrófagos/metabolismo , Monócitos/citologia , Monócitos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteínas NLR/genética , Proteína Adaptadora de Sinalização NOD2/genética
15.
Nat Commun ; 8: 14279, 2017 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-28176794

RESUMO

By moving essential body fluids and molecules, motile cilia and flagella govern respiratory mucociliary clearance, laterality determination and the transport of gametes and cerebrospinal fluid. Primary ciliary dyskinesia (PCD) is an autosomal recessive disorder frequently caused by non-assembly of dynein arm motors into cilia and flagella axonemes. Before their import into cilia and flagella, multi-subunit axonemal dynein arms are thought to be stabilized and pre-assembled in the cytoplasm through a DNAAF2-DNAAF4-HSP90 complex akin to the HSP90 co-chaperone R2TP complex. Here, we demonstrate that large genomic deletions as well as point mutations involving PIH1D3 are responsible for an X-linked form of PCD causing disruption of early axonemal dynein assembly. We propose that PIH1D3, a protein that emerges as a new player of the cytoplasmic pre-assembly pathway, is part of a complementary conserved R2TP-like HSP90 co-chaperone complex, the loss of which affects assembly of a subset of inner arm dyneins.


Assuntos
Proteínas Reguladoras de Apoptose/genética , Dineínas do Axonema/metabolismo , Genes Ligados ao Cromossomo X/genética , Doenças Genéticas Ligadas ao Cromossomo X/genética , Síndrome de Kartagener/genética , Proteínas dos Microtúbulos/genética , Chaperonas Moleculares/genética , Adolescente , Adulto , Animais , Proteínas Reguladoras de Apoptose/metabolismo , Axonema/patologia , Criança , Pré-Escolar , Cílios/patologia , Cílios/ultraestrutura , Citoplasma/patologia , Modelos Animais de Doenças , Feminino , Doenças Genéticas Ligadas ao Cromossomo X/patologia , Células HEK293 , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Recém-Nascido , Peptídeos e Proteínas de Sinalização Intracelular , Síndrome de Kartagener/patologia , Masculino , Microscopia Eletrônica de Transmissão , Linhagem , Filogenia , Mutação Puntual , Dobramento de Proteína , Alinhamento de Sequência , Deleção de Sequência , Motilidade dos Espermatozoides/genética , Sequenciamento do Exoma , Peixe-Zebra
16.
Mol Cell Proteomics ; 16(3): 457-468, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28082515

RESUMO

Cystinosis is a rare autosomal recessive lysosomal storage disorder characterized by intralysosomal accumulation of cystine. The causative gene for cystinosis is CTNS, which encodes the protein cystinosin, a lysosomal proton-driven cystine transporter. Over 100 mutations have been reported, leading to varying disease severity, often in correlation with residual cystinosin activity as a transporter and with maintenance of its protein-protein interactions. In this study, we focus on the ΔITILELP mutation, the only mutation reported that sometimes leads to severe forms, inconsistent with its residual transported activity. ΔITILELP is a deletion that eliminates a consensus site on N66, one of the protein's seven glycosylation sites. Our hypothesis was that the ΔITILELP mutant is less stable and undergoes faster degradation. Our dynamic stable isotope labeling by amino acids in cell culture (SILAC) study clearly showed that wild-type cystinosin is very stable, whereas ΔITILELP is degraded three times more rapidly. Additional lysosome inhibition experiments confirmed ΔITILELP instability and showed that the degradation was mainly lysosomal. We observed that in the lysosome, ΔITILELP is still capable of interacting with the V-ATPase complex and some members of the mTOR pathway, similar to the wild-type protein. Intriguingly, our interactomic and immunofluorescence studies showed that ΔITILELP is partially retained at the endoplasmic reticulum (ER). We proposed that the ΔITILELP mutation causes protein misfolding, ER retention and inability to be processed in the Golgi apparatus, and we demonstrated that ΔITILELP carries high-mannose glycans on all six of its remaining glycosylation sites. We found that the high turnover of ΔITILELP, because of its immature glycosylation state in combination with low transport activity, might be responsible for the phenotype observed in some patients.


Assuntos
Sistemas de Transporte de Aminoácidos Neutros/química , Sistemas de Transporte de Aminoácidos Neutros/genética , Técnicas de Cultura de Células/métodos , Marcação por Isótopo/métodos , Mutação , Sistemas de Transporte de Aminoácidos Neutros/metabolismo , Animais , Retículo Endoplasmático/metabolismo , Glicosilação , Humanos , Lisossomos/metabolismo , Camundongos , Células NIH 3T3 , Polissacarídeos/metabolismo , Dobramento de Proteína , Estabilidade Proteica , Proteólise , Serina-Treonina Quinases TOR/metabolismo , ATPases Vacuolares Próton-Translocadoras/metabolismo
17.
Am J Hum Genet ; 99(2): 489-500, 2016 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-27486783

RESUMO

Primary ciliary dyskinesia (PCD) is an autosomal-recessive disease due to functional or ultra-structural defects of motile cilia. Affected individuals display recurrent respiratory-tract infections; most males are infertile as a result of sperm flagellar dysfunction. The great majority of the PCD-associated genes identified so far encode either components of dynein arms (DAs), which are multiprotein-ATPase complexes essential for ciliary motility, or proteins involved in DA assembly. To identify the molecular basis of a PCD phenotype characterized by central complex (CC) defects but normal DA structure, a phenotype found in ∼15% of cases, we performed whole-exome sequencing in a male individual with PCD and unexplained CC defects. This analysis, combined with whole-genome SNP genotyping, identified a homozygous mutation in DNAJB13 (c.833T>G), a gene encoding a HSP40 co-chaperone whose ortholog in the flagellated alga Chlamydomonas localizes to the radial spokes. In vitro studies showed that this missense substitution (p.Met278Arg), which involves a highly conserved residue of several HSP40 family members, leads to protein instability and triggers proteasomal degradation, a result confirmed by the absence of endogenous DNAJB13 in cilia and sperm from this individual. Subsequent DNAJB13 analyses identified another homozygous mutation in a second family; the study of DNAJB13 transcripts obtained from airway cells showed that this mutation (c.68+1G>C) results in a splicing defect consistent with a loss-of-function mutation. Overall, this study, which establishes mutations in DNAJB13 as a cause of PCD, unveils the key role played by DNAJB13 in the proper formation and function of ciliary and flagellar axonemes in humans.


Assuntos
Transtornos da Motilidade Ciliar/genética , Proteínas de Choque Térmico/genética , Infertilidade Masculina/genética , Mutação , Adolescente , Proteínas Reguladoras de Apoptose , Axonema/genética , Cílios/genética , Transtornos da Motilidade Ciliar/patologia , Exoma/genética , Feminino , Flagelos/genética , Flagelos/patologia , Proteínas de Choque Térmico HSP40/metabolismo , Proteínas de Choque Térmico/metabolismo , Homozigoto , Humanos , Infertilidade Masculina/patologia , Síndrome de Kartagener/genética , Masculino , Pessoa de Meia-Idade , Chaperonas Moleculares , Mutação de Sentido Incorreto/genética , Fenótipo , Polimorfismo de Nucleotídeo Único/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Estabilidade Proteica , Splicing de RNA/genética , Sêmen , Espermatozoides/metabolismo , Espermatozoides/patologia
18.
Hum Mutat ; 37(8): 776-85, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27120127

RESUMO

Primary ciliary dyskinesia (PCD) is an autosomal recessive disease characterized by chronic respiratory infections of the upper and lower airways, hypofertility, and, in approximately half of the cases, situs inversus. This complex phenotype results from defects in motile cilia and sperm flagella. Among the numerous genes involved in PCD, very few-including CCDC39 and CCDC40-carry mutations that lead to a disorganization of ciliary axonemes with microtubule misalignment. Focusing on this particular phenotype, we identified bi-allelic loss-of-function mutations in GAS8, a gene that encodes a subunit of the nexin-dynein regulatory complex (N-DRC) orthologous to DRC4 of the flagellated alga Chlamydomonas reinhardtii. Unlike the majority of PCD patients, individuals with GAS8 mutations have motile cilia, which, as documented by high-speed videomicroscopy, display a subtle beating pattern defect characterized by slightly reduced bending amplitude. Immunofluorescence studies performed on patients' respiratory cilia revealed that GAS8 is not required for the proper expression of CCDC39 and CCDC40. Rather, mutations in GAS8 affect the subcellular localization of another N-DRC subunit called DRC3. Overall, this study, which identifies GAS8 as a PCD gene, unveils the key importance of the corresponding protein in N-DRC integrity and in the proper alignment of axonemal microtubules in humans.


Assuntos
Axonema/patologia , Proteínas do Citoesqueleto/genética , Síndrome de Kartagener/genética , Mutação , Proteínas de Neoplasias/genética , Adulto , Criança , Proteínas do Citoesqueleto/metabolismo , Feminino , Predisposição Genética para Doença , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Síndrome de Kartagener/metabolismo , Síndrome de Kartagener/patologia , Masculino , Proteínas de Neoplasias/metabolismo , Análise de Sequência de DNA
19.
J Am Soc Nephrol ; 27(6): 1678-88, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26449607

RESUMO

Cystinosis is a rare autosomal recessive storage disorder characterized by defective lysosomal efflux of cystine due to mutations in the CTNS gene encoding the lysosomal cystine transporter, cystinosin. Lysosomal cystine accumulation leads to crystal formation and functional impairment of multiple organs. Moreover, cystinosis is the most common inherited cause of renal Fanconi syndrome in children. Oral cysteamine therapy delays disease progression by reducing intracellular cystine levels. However, because cysteamine does not correct all complications of cystinosis, including Fanconi syndrome, we hypothesized that cystinosin could have novel roles in addition to transporting cystine out of the lysosome. By coimmunoprecipitation experiments and mass spectrometry, we found cystinosin interacts with almost all components of vacuolar H(+)-ATPase and the Ragulator complex and with the small GTPases Ras-related GTP-binding protein A (RagA) and RagC. Furthermore, the mammalian target of rapamycin complex 1 (mTORC1) pathway was downregulated in proximal tubular cell lines derived from Ctns(-/-) mice. Decrease of lysosomal cystine levels by cysteamine did not rescue mTORC1 activation in these cells, suggesting that the downregulation of mTORC1 is due to the absence of cystinosin rather than to the accumulation of cystine. Our results show a dual role for cystinosin as a cystine transporter and as a component of the mTORC1 pathway, and provide an explanation for the appearance of Fanconi syndrome in cystinosis. Furthermore, this study highlights the need to develop new treatments not dependent on lysosomal cystine depletion alone for this devastating disease.


Assuntos
Sistemas de Transporte de Aminoácidos Neutros/fisiologia , Cistinose/etiologia , Complexos Multiproteicos/fisiologia , Transdução de Sinais , Serina-Treonina Quinases TOR/fisiologia , ATPases Vacuolares Próton-Translocadoras/fisiologia , Animais , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos
20.
Traffic ; 16(7): 712-26, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25753619

RESUMO

Cystinosin is a lysosomal cystine transporter defective in cystinosis, an autosomal recessive lysosomal storage disorder. It is composed of seven transmembrane (TM) domains and contains two lysosomal targeting motifs: a tyrosine-based signal (GYDQL) in its C-terminal tail and a non-classical motif in its fifth inter-TM loop. Using the yeast two-hybrid system, we showed that the GYDQL motif specifically interacted with the µ subunit of the adaptor protein complex 3 (AP-3). Moreover, cell surface biotinylation and total internal reflection fluorescence microscopy revealed that cystinosin was partially mislocalized to the plasma membrane (PM) in AP-3-depleted cells. We generated a chimeric CD63 protein to specifically analyze the function of the GYDQL motif. This chimeric protein was targeted to lysosomes in a manner similar to cystinosin and was partially mislocalized to the PM in AP-3 knockdown cells where it also accumulated in the trans-Golgi network and early endosomes. Together with the fact that the surface levels of cystinosin and of the CD63-GYDQL chimeric protein were not increased when clathrin-mediated endocytosis was impaired, our data show that the tyrosine-based motif of cystinosin is a 'strong' AP-3 interacting motif responsible for lysosomal targeting of cystinosin by a direct intracellular pathway.


Assuntos
Complexo 3 de Proteínas Adaptadoras/metabolismo , Sistemas de Transporte de Aminoácidos Neutros/metabolismo , Lisossomos/metabolismo , Sinais Direcionadores de Proteínas , Sistemas de Transporte de Aminoácidos Neutros/química , Endocitose , Células HeLa , Humanos , Transporte Proteico , Tetraspanina 30/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA