Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Elife ; 112022 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-35730929

RESUMO

The chromokinesin KIF22 generates forces that contribute to mitotic chromosome congression and alignment. Mutations in the α2 helix of the motor domain of KIF22 have been identified in patients with abnormal skeletal development, and we report the identification of a patient with a novel mutation in the KIF22 tail. We demonstrate that pathogenic mutations do not result in a loss of KIF22's functions in early mitosis. Instead, mutations disrupt chromosome segregation in anaphase, resulting in reduced proliferation, abnormal daughter cell nuclear morphology, and, in a subset of cells, cytokinesis failure. This phenotype could be explained by a failure of KIF22 to inactivate in anaphase. Consistent with this model, constitutive activation of the motor via a known site of phosphoregulation in the tail phenocopied the effects of pathogenic mutations. These results suggest that the motor domain α2 helix may be an important site for regulation of KIF22 activity at the metaphase to anaphase transition. In support of this conclusion, mimicking phosphorylation of α2 helix residue T158 also prevents inactivation of KIF22 in anaphase. These findings demonstrate the importance of both the head and tail of the motor in regulating the activity of KIF22 and offer insight into the cellular consequences of preventing KIF22 inactivation and disrupting force balance in anaphase.


Assuntos
Anáfase , Segregação de Cromossomos , Proteínas de Ligação a DNA , Cinesinas , Proteínas Nucleares , Proteínas de Ligação a DNA/genética , Cinesinas/genética , Metáfase , Mitose , Mutação , Proteínas Nucleares/genética , Fuso Acromático
2.
Methods Mol Biol ; 2415: 139-149, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34972951

RESUMO

The chromokinesin KIF22 (Kid, kinesin-10 family) is the primary generator of polar ejection forces, which contribute to chromosome positioning and alignment in mitotic cells. Assessment of KIF22 function requires quantitative comparison of relative polar ejection forces between experimental conditions. This is facilitated by the generation of monopolar spindles to reduce the impact of bioriented microtubule attachment at kinetochores on chromosome positions and increase the dependence of chromosome positions on chromokinesin activity. Radial profile plots measure the intensity of chromatin signal in concentric circles around the poles of monopolar cells and represent an expedient quantitative measure of relative polar ejection forces. As such, this assay can be used to measure changes in polar ejection forces resulting from chromokinesin depletion or perturbation.


Assuntos
Cromossomos , Cinesinas , Cromossomos/genética , Proteínas de Ligação a DNA/genética , Cinetocoros , Microtúbulos , Mitose , Proteínas Nucleares/genética , Fuso Acromático
3.
Elife ; 92020 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-31958056

RESUMO

Kinesin-5 motors organize mitotic spindles by sliding apart microtubules. They are homotetramers with dimeric motor and tail domains at both ends of a bipolar minifilament. Here, we describe a regulatory mechanism involving direct binding between tail and motor domains and its fundamental role in microtubule sliding. Kinesin-5 tails decrease microtubule-stimulated ATP-hydrolysis by specifically engaging motor domains in the nucleotide-free or ADP states. Cryo-EM reveals that tail binding stabilizes an open motor domain ATP-active site. Full-length motors undergo slow motility and cluster together along microtubules, while tail-deleted motors exhibit rapid motility without clustering. The tail is critical for motors to zipper together two microtubules by generating substantial sliding forces. The tail is essential for mitotic spindle localization, which becomes severely reduced in tail-deleted motors. Our studies suggest a revised microtubule-sliding model, in which kinesin-5 tails stabilize motor domains in the microtubule-bound state by slowing ATP-binding, resulting in high-force production at both homotetramer ends.


Assuntos
Cinesinas/metabolismo , Microtúbulos/metabolismo , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Microscopia Crioeletrônica , Humanos , Hidrólise , Cinesinas/química , Cinesinas/ultraestrutura , Cinética , Ligação Proteica , Domínios Proteicos , Fuso Acromático/metabolismo
4.
Microbiology (Reading) ; 166(1): 34-43, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31585061

RESUMO

Microbial biofilms are ubiquitous in drinking water systems, yet our understanding of drinking water biofilms lags behind our understanding of those in other environments. Here, a six-member model bacterial community was used to identify the interactions and individual contributions of each species to community biofilm formation. These bacteria were isolated from the International Space Station potable water system and include Cupriavidus metallidurans, Chryseobacterium gleum, Ralstonia insidiosa, Ralstonia pickettii, Methylorubrum (Methylobacterium) populi and Sphingomonas paucimobilis, but all six species are common members of terrestrial potable water systems. Using reconstituted assemblages, from pairs to all 6 members, community biofilm formation was observed to be robust to the absence of any single species and only removal of the C. gleum/S. paucimobilis pair, out of all 15 possible 2-species subtractions, led to loss of community biofilm formation. In conjunction with these findings, dual-species biofilm formation assays supported the view that the contribution of C. gleum to community biofilm formation was dependent on synergistic biofilm formation with either R. insidiosa or C. metallidurans. These data support a model of multiple, partially redundant species interactions to generate robustness in biofilm formation. A bacteriophage and multiple predatory bacteria were used to test the resilience of the community to the removal of individual members in situ, but the combination of precise and substantial depletion of a single target species was not achievable. We propose that this assemblage can be used as a tractable model to understand the molecular bases of the interactions described here and to decipher other functions of drinking water biofilms.


Assuntos
Biofilmes/crescimento & desenvolvimento , Água Potável/microbiologia , Interações Microbianas/fisiologia , Microbiota , Bactérias/classificação , Bactérias/crescimento & desenvolvimento , Bactérias/isolamento & purificação , Bactérias/virologia , Bacteriófagos/fisiologia , Astronave , Microbiologia da Água
5.
Proc Natl Acad Sci U S A ; 115(8): E1779-E1788, 2018 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-29432173

RESUMO

Numerous posttranslational modifications have been described in kinesins, but their consequences on motor mechanics are largely unknown. We investigated one of these-acetylation of lysine 146 in Eg5-by creating an acetylation mimetic lysine to glutamine substitution (K146Q). Lysine 146 is located in the α2 helix of the motor domain, where it makes an ionic bond with aspartate 91 on the neighboring α1 helix. Molecular dynamics simulations predict that disrupting this bond enhances catalytic site-neck linker coupling. We tested this using structural kinetics and single-molecule mechanics and found that the K146Q mutation increases motor performance under load and coupling of the neck linker to catalytic site. These changes convert Eg5 from a motor that dissociates from the microtubule at low load into one that is more tightly coupled and dissociation resistant-features shared by kinesin 1. These features combined with the increased propensity to stall predict that the K146Q Eg5 acetylation mimetic should act in the cell as a "brake" that slows spindle pole separation, and we have confirmed this by expressing this modified motor in mitotically active cells. Thus, our results illustrate how a posttranslational modification of a kinesin can be used to fine tune motor behavior to meet specific physiological needs.


Assuntos
Cinesinas/química , Cinesinas/metabolismo , Mitose/fisiologia , Sequência de Aminoácidos , Fenômenos Biomecânicos , Células HeLa , Humanos , Modelos Moleculares , Mutação , Conformação Proteica
6.
Neurochem Int ; 99: 24-32, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27264910

RESUMO

Phosphine-borane complexes are novel cell-permeable drugs that protect neurons from axonal injury in vitro and in vivo. These drugs activate the extracellular signal-regulated kinases 1/2 (ERK1/2) cell survival pathway and are therefore neuroprotective, but do not scavenge superoxide. In order to understand the interaction between superoxide signaling of neuronal death and the action of phosphine-borane complexes, their biochemical activity in cell-free and in vitro assays was studied by electron paramagnetic resonance (EPR) spectrometry and using an intracellular dithiol reporter that becomes fluorescent when its disulfide bond is cleaved. These studies demonstrated that bis(3-propionic acid methyl ester) phenylphosphine-borane complex (PB1) and (3-propionic acid methyl ester) diphenylphosphine-borane complex (PB2) are potent intracellular disulfide reducing agents which are cell permeable. EPR and pharmacological studies demonstrated reducing activity but not scavenging of superoxide. Given that phosphine-borane complexes reduce cell injury from mitochondrial superoxide generation but do not scavenge superoxide, this implies a mechanism where an intracellular superoxide burst induces downstream formation of protein disulfides. The redox-dependent cleavage of the disulfides is therefore a novel mechanism of neuroprotection.


Assuntos
Boranos/metabolismo , Líquido Intracelular/metabolismo , Neuroproteção/fisiologia , Fosfinas/metabolismo , Animais , Boranos/química , Linhagem Celular , Dissulfetos/metabolismo , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Líquido Intracelular/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/fisiologia , Oxirredução , Fosfinas/química , Ratos , Suínos
7.
PLoS One ; 10(12): e0145270, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26684837

RESUMO

PURPOSE: RGC-5 cells undergo differentiation into a neuronal phenotype with low concentrations of staurosporine. Although the RGC-5 cell line was initially thought to be of retinal ganglion cell origin, recent evidence suggests that the RGC-5 line could have been the result of contamination with 661W mouse cone photoreceptor cells. This raised the possibility that a cone photoreceptor cell line could be multipotent and could be differentiated to a neuronal phenotype. METHODS: 661W and RGC-5 cells, non-neuronal retinal astrocytes, retinal endothelial cells, retinal pericytes, M21 melanoma cells, K562 chronic myelogenous leukemia cells, and Daudi Burkitt lymphoma cells, were differentiated with staurosporine. The resulting morphology was quantitated using NeuronJ with respect to neurite counts and topology. RESULTS: Treatment with staurosporine induced similar-appearing morphological differentiation in both 661W and RGC-5 cells. The following measures were not significantly different between 661W and RGC-5 cells: number of neurites per cell, total neurite field length, number of neurite branch points, and cell viability. Neuronal-like differentiation was not observed in the other cell lines tested. CONCLUSIONS: 661W and RGC-5 cells have virtually identical and distinctive morphology when differentiated with low concentrations of staurosporine. This result demonstrates that a retinal neuronal precursor cell with cone photoreceptor lineage can be differentiated to express a neuronal morphology.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Células Ganglionares da Retina/fisiologia , Animais , Linhagem Celular , Forma Celular/efeitos dos fármacos , Camundongos , Neuritos/efeitos dos fármacos , Neuritos/ultraestrutura , Ratos , Células Ganglionares da Retina/efeitos dos fármacos , Células Ganglionares da Retina/ultraestrutura , Estaurosporina/farmacologia
8.
Redox Biol ; 6: 73-79, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26188467

RESUMO

Exposure to radiation can damage endothelial cells in the irradiated area via the production of reactive oxygen species. We synthesized phosphine-borane complexes that reduce disulfide bonds and had previously been shown to interfere with redox-mediated signaling of cell death. We hypothesized that this class of drugs could interfere with the downstream effects of oxidative stress after irradiation and rescue endothelial cells from radiation damage. Cultured bovine aortic endothelial cells were plated for clonogenic assay prior to exposure to varying doses of irradiation from a (137)Cs irradiator and treated with various concentrations of bis(3-propionic acid methyl ester)phenylphosphine borane complex (PB1) at different time points. The clone-forming ability of the irradiated cells was assessed seven days after irradiation. We compared the radioprotective effects of PB1 with the aminothiol radioprotectant WR1065 and known superoxide scavengers. PB1 significantly protected bovine aortic endothelial cells from radiation damage, particularly when treated both before and after radiation. The radioprotection with 1 µM PB1 corresponded to a dose-reduction factor of 1.24. Radioprotection by PB1 was comparable to the aminothiol WR1065, but was significantly less toxic and required much lower concentrations of drug (1 µM vs. 4 mM, respectively). Superoxide scavengers were not radioprotective in this paradigm, indicating the mechanisms for both loss of clonogenicity and PB1 radioprotection are independent of superoxide signaling. These data demonstrate that PB1 is an effective redox-active radioprotectant for endothelial cells in vitro, and is radioprotective at a concentration approximately 4 orders of magnitude lower than the aminothiol WR1065 with less toxicity.


Assuntos
Boranos/farmacologia , Células Endoteliais/efeitos dos fármacos , Raios gama/efeitos adversos , Fosfinas/farmacologia , Protetores contra Radiação/farmacologia , Superóxidos/antagonistas & inibidores , Animais , Aorta/citologia , Aorta/efeitos dos fármacos , Aorta/metabolismo , Aorta/efeitos da radiação , Bovinos , Células Cultivadas , Células Clonais , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Células Endoteliais/efeitos da radiação , Humanos , Mercaptoetilaminas/farmacologia , Metaloporfirinas/farmacologia , Oxirredução , Polietilenoglicóis/farmacologia , Transdução de Sinais , Superóxido Dismutase/farmacologia , Superóxidos/metabolismo
9.
ACS Chem Neurosci ; 1(2): 95-103, 2010 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-20532184

RESUMO

Central neurons undergo cell death after axotomy. One of the signaling pathways for this process is oxidative modification of one or more critical sulfhydryls in association with superoxide generation within mitochondria. Agents that reduce oxidized sulfhydryls are neuroprotective of axotomized retinal ganglion cells, and we hypothesized that this occurs via reversal of the effects of mitochondrial-produced superoxide. To study this, we measured the ability of the novel borane-phosphine complex drugs bis(3-propionic acid methyl ester)phenylphosphine borane complex (PB1) and (3-propionic acid methyl ester)diphenylphosphine borane complex (PB2) to inhibit the death of neuron-like RGC-5 cells induced by perturbation of the mitochondrial electron transport chain. We found that borane-phosphine complexes prevent neuronal cell death from superoxide produced by the redox-cycling agent menadione and the complex III inhibitor antimycin A, which produce superoxide towards the cytoplasm and matrix, but not the complex I inhibitor rotenone, which produces superoxide in the matrix alone. The ability of these disulfide reductants to prevent cell death may be predicted by the topology of superoxide production with respect to the mitochondrial matrix and extramitochondrial space.

10.
Neurochem Int ; 56(4): 554-60, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20043966

RESUMO

RGC-5 cells are transformed cells that express several surface markers characteristic of neuronal precursor cells, but resemble glial cells morphologically and divide in culture. When treated with the apoptosis-inducing agent staurosporine, RGC-5 cells assume a neuronal morphology, extend neurites, stop dividing, and express ion channels without acute signs of apoptosis. This differentiation with staurosporine is similar to what has been described for certain other neuronal cell lines, and occurs by a mechanism not yet understood. Inhibition of several kinases known to be inhibited by staurosporine fails to differentiate RGC-5 cells, and examination of the kinome associated with staurosporine-dependent differentiation has been unhelpful so far. To better understand the mechanism of staurosporine-mediated differentiation of neuronal precursor cells, we studied the effects of the following structurally similar molecules on differentiation of neuronal and non-neuronal cell lines, comparing them to staurosporine: 9,12-epoxy-1H-diindolo[1,2,3-fg:3',2',1'-kl]pyrrolo[3,4-i][1,6]benzodiazocine-10-carboxylic acid, 2,3,9,10,11,12-hexahydro-10-hydroxy-9-methyl-1-oxo-, methyl ester, (9S,10R,12R)-(K252a), (5R,6S,8S)-6-hydroxy-5-methyl-13-oxo-6,7,8,13,14,15-hexahydro-5H-16-oxa-4b,8a,14-triaza-5,8-methanodibenzo[b,h]cycloocta[jkl]cyclopenta[e]-as-indacene-6-carboxylic acid (K252b), staurosporine aglycone (K252c), 7-hydroxystaurosporine (UCN-01), and 4'-N-benzoylstaurosporine (PKC-412). Morphological differentiation, indicated by neurite extension and somal rounding, was quantitatively assessed with NeuronJ. We found that the critical structural component for differentiation in RGC-5 cells is a basic amine adjacent to an accessible methoxy group at the 3' carbon. Given that UCN-01 and similar compounds are potent anti-cancer drugs, examination of molecules that share similar structural features may yield insights into the design of other drugs for differentiation.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Estaurosporina/análogos & derivados , Estaurosporina/farmacologia , Células 3T3 , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Camundongos , Neuritos/efeitos dos fármacos , Neuritos/ultraestrutura , Neurônios/ultraestrutura , Células PC12 , Inibidores de Proteínas Quinases/farmacologia , Ratos , Relação Estrutura-Atividade , Ativação Transcricional/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA