Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biol Lett ; 19(9): 20230314, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37700701

RESUMO

The Cretaceous-Palaeogene mass extinction event (K-Pg) witnessed upwards of 75% of animal species going extinct, most notably among these are the non-avian dinosaurs. A major question in macroevolution is whether this extinction event influenced the rise of flowering plants (angiosperms). The fossil record suggests that the K-Pg event had a strong regional impact on angiosperms with up to 75% species extinctions, but only had a minor impact on the extinction rates of major lineages (families and orders). Phylogenetic evidence for angiosperm extinction dynamics through time remains unexplored. By analysing two angiosperm mega-phylogenies containing approximately 32 000-73 000 extant species, here we show relatively constant extinction rates throughout geological time and no evidence for a mass extinction at the K-Pg boundary. Despite high species-level extinction observed in the fossil record, our results support the macroevolutionary resilience of angiosperms to the K-Pg mass extinction event via survival of higher lineages.


Assuntos
Dinossauros , Magnoliopsida , Animais , Extinção Biológica , Filogenia , Fósseis
2.
Proc Natl Acad Sci U S A ; 120(29): e2102408120, 2023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37428929

RESUMO

Although climate change has been implicated as a major catalyst of diversification, its effects are thought to be inconsistent and much less pervasive than localized climate or the accumulation of species with time. Focused analyses of highly speciose clades are needed in order to disentangle the consequences of climate change, geography, and time. Here, we show that global cooling shapes the biodiversity of terrestrial orchids. Using a phylogeny of 1,475 species of Orchidoideae, the largest terrestrial orchid subfamily, we find that speciation rate is dependent on historic global cooling, not time, tropical distributions, elevation, variation in chromosome number, or other types of historic climate change. Relative to the gradual accumulation of species with time, models specifying speciation driven by historic global cooling are over 700 times more likely. Evidence ratios estimated for 212 other plant and animal groups reveal that terrestrial orchids represent one of the best-supported cases of temperature-spurred speciation yet reported. Employing >2.5 million georeferenced records, we find that global cooling drove contemporaneous diversification in each of the seven major orchid bioregions of the Earth. With current emphasis on understanding and predicting the immediate impacts of global warming, our study provides a clear case study of the long-term impacts of global climate change on biodiversity.


Assuntos
Biodiversidade , Temperatura Baixa , Animais , Filogenia , Temperatura , Geografia , Especiação Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA