RESUMO
The segmented body plan of vertebrates is established during somitogenesis, a well-studied process in model organisms; however, the details of this process in humans remain largely unknown owing to ethical and technical limitations. Despite recent advances with pluripotent stem cell-based approaches1-5, models that robustly recapitulate human somitogenesis in both space and time remain scarce. Here we introduce a pluripotent stem cell-derived mesoderm-based 3D model of human segmentation and somitogenesis-which we termed 'axioloid'-that captures accurately the oscillatory dynamics of the segmentation clock and the morphological and molecular characteristics of sequential somite formation in vitro. Axioloids show proper rostrocaudal patterning of forming segments and robust anterior-posterior FGF-WNT signalling gradients and retinoic acid signalling components. We identify an unexpected critical role of retinoic acid signalling in the stabilization of forming segments, indicating distinct, but also synergistic effects of retinoic acid and extracellular matrix on the formation and epithelialization of somites. Comparative analysis demonstrates marked similarities of axioloids to the human embryo, further validated by the presence of a Hox code in axioloids. Finally, we demonstrate the utility of axioloids for studying the pathogenesis of human congenital spine diseases using induced pluripotent stem cells with mutations in HES7 and MESP2. Our results indicate that axioloids represent a promising platform for the study of axial development and disease in humans.
Assuntos
Padronização Corporal , Técnicas de Cultura de Células em Três Dimensões , Somitos , Humanos , Padronização Corporal/efeitos dos fármacos , Matriz Extracelular/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Técnicas In Vitro , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Modelos Biológicos , Mutação , Somitos/citologia , Somitos/efeitos dos fármacos , Somitos/embriologia , Somitos/metabolismo , Doenças da Coluna Vertebral/patologia , Tretinoína/metabolismo , Tretinoína/farmacologia , Via de Sinalização Wnt/efeitos dos fármacosRESUMO
Polymerase chain reaction (PCR) has proven to be the gold-standard for SARS-CoV-2 detection in clinical settings. The most common approaches rely on nasopharyngeal specimens obtained from swabs, followed by RNA extraction, reverse transcription and quantitative PCR. Although swab-based PCR is sensitive, swabbing is invasive and unpleasant to administer, reducing patient compliance for regular testing and resulting in an increased risk of improper sampling. To overcome these obstacles, we developed a non-invasive one-step RT-qPCR assay performed directly on saliva specimens. The University of Nottingham Asymptomatic Testing Service protocol simplifies sample collection and bypasses the need for RNA extraction, or additives, thus helping to encourage more regular testing and reducing processing time and costs. We have evaluated the assay against the performance criteria specified by the UK regulatory bodies and attained accreditation (BS EN ISO/IEC 17,025:2017) for SARS-CoV-2 diagnostic testing by the United Kingdom Accreditation Service. We observed a sensitivity of 1 viral copy per microlitre of saliva, and demonstrated a concordance of > 99.4% between our results and those of other accredited testing facilities. We concluded that saliva is a stable medium that allows for a highly precise, repeatable, and robust testing method.
Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/diagnóstico , Teste para COVID-19 , Técnicas de Laboratório Clínico/métodos , Humanos , Nasofaringe , RNA Viral/análise , RNA Viral/genética , SARS-CoV-2/genética , Saliva/química , Sensibilidade e Especificidade , Manejo de Espécimes/métodosRESUMO
Epigenetic mechanisms which play an essential role in normal developmental processes, such as self-renewal and fate specification of neural stem cells (NSC) are also responsible for some of the changes in the glioblastoma (GBM) genome. Here we develop a strategy to compare the epigenetic and transcriptional make-up of primary GBM cells (GIC) with patient-matched expanded potential stem cell (EPSC)-derived NSC (iNSC). Using a comparative analysis of the transcriptome of syngeneic GIC/iNSC pairs, we identify a glycosaminoglycan (GAG)-mediated mechanism of recruitment of regulatory T cells (Tregs) in GBM. Integrated analysis of the transcriptome and DNA methylome of GBM cells identifies druggable target genes and patient-specific prediction of drug response in primary GIC cultures, which is validated in 3D and in vivo models. Taken together, we provide a proof of principle that this experimental pipeline has the potential to identify patient-specific disease mechanisms and druggable targets in GBM.
Assuntos
Neoplasias Encefálicas/genética , Glioblastoma/genética , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neurais/metabolismo , Animais , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/fisiopatologia , Diferenciação Celular , Metilação de DNA , Epigênese Genética , Epigenômica , Glioblastoma/metabolismo , Glioblastoma/fisiopatologia , Humanos , Camundongos , Transcrição GênicaRESUMO
Introduction. The COVID-19 pandemic, which began in 2020 is testing economic resilience and surge capacity of healthcare providers worldwide. At the time of writing, positive detection of the SARS-CoV-2 virus remains the only method for diagnosing COVID-19 infection. Rapid upscaling of national SARS-CoV-2 genome testing presented challenges: (1) Unpredictable supply chains of reagents and kits for virus inactivation, RNA extraction and PCR-detection of viral genomes. (2) Rapid time to result of <24 h is required in order to facilitate timely infection control measures.Hypothesis. Extraction-free sample processing would impact commercially available SARS-CoV-2 genome detection methods.Aim. We evaluated whether alternative commercially available kits provided sensitivity and accuracy of SARS-CoV-2 genome detection comparable to those used by regional National Healthcare Services (NHS).Methodology. We tested several detection methods and tested whether detection was altered by heat inactivation, an approach for rapid one-step viral inactivation and RNA extraction without chemicals or kits.Results. Using purified RNA, we found the CerTest VIASURE kit to be comparable to the Altona RealStar system currently in use, and further showed that both diagnostic kits performed similarly in the BioRad CFX96 and Roche LightCycler 480 II machines. Additionally, both kits were comparable to a third alternative using a combination of Quantabio qScript one-step Quantitative Reverse Transcription Polymerase Chain Reaction (qRT-PCR) mix and Centre for Disease Control and Prevention (CDC)-accredited N1 and N2 primer/probes when looking specifically at borderline samples. Importantly, when using the kits in an extraction-free protocol, following heat inactivation, we saw differing results, with the combined Quantabio-CDC assay showing superior accuracy and sensitivity. In particular, detection using the CDC N2 probe following the extraction-free protocol was highly correlated to results generated with the same probe following RNA extraction and reported clinically (n=127; R2=0.9259).Conclusion. Our results demonstrate that sample treatment can greatly affect the downstream performance of SARS-CoV-2 diagnostic kits, with varying impact depending on the kit. We also showed that one-step heat-inactivation methods could reduce time from swab receipt to outcome of test result. Combined, these findings present alternatives to the protocols in use and can serve to alleviate any arising supply-chain issues at different points in the workflow, whilst accelerating testing, and reducing cost and environmental impact.
Assuntos
Teste de Ácido Nucleico para COVID-19 , COVID-19/diagnóstico , SARS-CoV-2/isolamento & purificação , Manejo de Espécimes/métodos , Meios de Cultura , Temperatura Alta , Humanos , RNA Viral/genética , RNA Viral/isolamento & purificação , Kit de Reagentes para Diagnóstico , SARS-CoV-2/genética , Sensibilidade e Especificidade , Inativação de VírusRESUMO
There is a growing awareness that cells grown in 3D better model in vivo behavior than those grown in 2D. In this protocol, we describe a simple and tunable 3D hydrogel, suitable for culturing cells and tissue in a setting that matches their native environment. This is particularly important for researchers investigating the initiation, growth, and treatment of cancer where the interaction between cells and their local extracellular matrix is a fundamental part of the model. Moving to 3D culture can be challenging and is often associated with a lack of reproducibility due to high batch-to-batch variation in animal-derived 3D culture matrices. Similarly, handling issues can limit the usefulness of synthetic hydrogels. In response to this need, we have optimized a simple self-assembling peptide gel, to enable the culture of relevant cell line models of cancer and disease, as well as patient-derived tissue/cells. The gel itself is free from matrix components, apart from those added during encapsulation or deposited into the gel by the encapsulated cells. The mechanical properties of the hydrogels can also be altered independent of matrix addition. It, therefore, acts as a 'blank slate' allowing researchers to build a 3D culture environment that reflects the target tissue of interest and to dissect the influences of mechanical forces and/or biochemical control of cell behavior independently.