Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cell ; 185(22): 4216-4232.e16, 2022 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-36240780

RESUMO

Genotype-phenotype associations for common diseases are often compounded by pleiotropy and metabolic state. Here, we devised a pooled human organoid-panel of steatohepatitis to investigate the impact of metabolic status on genotype-phenotype association. En masse population-based phenotypic analysis under insulin insensitive conditions predicted key non-alcoholic steatohepatitis (NASH)-genetic factors including the glucokinase regulatory protein (GCKR)-rs1260326:C>T. Analysis of NASH clinical cohorts revealed that GCKR-rs1260326-T allele elevates disease severity only under diabetic state but protects from fibrosis under non-diabetic states. Transcriptomic, metabolomic, and pharmacological analyses indicate significant mitochondrial dysfunction incurred by GCKR-rs1260326, which was not reversed with metformin. Uncoupling oxidative mechanisms mitigated mitochondrial dysfunction and permitted adaptation to increased fatty acid supply while protecting against oxidant stress, forming a basis for future therapeutic approaches for diabetic NASH. Thus, "in-a-dish" genotype-phenotype association strategies disentangle the opposing roles of metabolic-associated gene variant functions and offer a rich mechanistic, diagnostic, and therapeutic inference toolbox toward precision hepatology. VIDEO ABSTRACT.


Assuntos
Predisposição Genética para Doença , Hepatopatia Gordurosa não Alcoólica , Humanos , Hepatopatia Gordurosa não Alcoólica/genética , Organoides , Estudos de Associação Genética , Alelos , Fígado
2.
Dev Growth Differ ; 63(1): 47-58, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33423319

RESUMO

The human adult liver has a multi-cellular structure consisting of large lobes subdivided into lobules containing portal triads and hepatic cords lined by specialized blood vessels. Vital hepatic functions include filtering blood, metabolizing drugs, and production of bile and blood plasma proteins like albumin, among many other functions, which are generally dependent on the location or zone in which the hepatocyte resides in the liver. Due to the liver's intricate structure, there are many challenges to design differentiation protocols to generate more mature functional hepatocytes from human stem cells and maintain the long-term viability and functionality of primary hepatocytes. To this end, recent advancements in three-dimensional (3D) stem cell culture have accelerated the generation of a human miniature liver system, also known as liver organoids, with polarized epithelial cells, supportive cell types and extra-cellular matrix deposition by translating knowledge gained in studies of animal organogenesis and regeneration. To facilitate the efforts to study human development and disease using in vitro hepatic models, a thorough understanding of state-of-art protocols and underlying rationales is essential. Here, we review rapidly evolving 3D liver models, mainly focusing on organoid models differentiated from human cells.


Assuntos
Fígado/citologia , Modelos Biológicos , Técnicas de Cultura de Células , Diferenciação Celular , Hepatócitos/citologia , Humanos , Organoides/citologia
3.
Nat Protoc ; 16(2): 919-936, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33432231

RESUMO

Human organoids are emerging as a valuable resource to investigate human organ development and disease. The applicability of human organoids has been limited, partly due to the oversimplified architecture of the current technology, which generates single-tissue organoids that lack inter-organ structural connections. Thus, engineering organoid systems that incorporate connectivity between neighboring organs is a critical unmet challenge in an evolving organoid field. Here, we describe a protocol for the continuous patterning of hepatic, biliary and pancreatic (HBP) structures from a 3D culture of human pluripotent stem cells (PSCs). After differentiating PSCs into anterior and posterior gut spheroids, the two spheroids are fused together in one well. Subsequently, self-patterning of multi-organ (i.e., HBP) domains occurs within the boundary region of the two spheroids, even in the absence of any extrinsic factors. Long-term culture of HBP structures induces differentiation of the domains into segregated organs complete with developmentally relevant invagination and epithelial branching. This in-a-dish model of human hepato-biliary-pancreatic organogenesis provides a unique platform for studying human development, congenital disorders, drug development and therapeutic transplantation. More broadly, our approach could potentially be used to establish inter-organ connectivity models for other organ systems derived from stem cell cultures.


Assuntos
Técnicas de Cultura de Células/métodos , Organoides/citologia , Engenharia Tecidual/métodos , Ductos Biliares/citologia , Diferenciação Celular/fisiologia , Humanos , Fígado/citologia , Organogênese/fisiologia , Organoides/metabolismo , Pâncreas/citologia , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo
4.
Med ; 2(6): 773-783.e5, 2021 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-35590139

RESUMO

BACKGROUND: Several aquatic organisms such as loaches have evolved unique intestinal breathing mechanisms to survive under extensive hypoxia. To date, it is highly controversial whether such capability can be adapted in mammalian species as another site for gas exchange. Here, we report the advent of the intestinal breathing phenomenon in mammalians by exploiting EVA (enteral ventilation via anus). METHODS: Two different modes of EVA were investigated in an experimental model of respiratory failure: intra-rectal oxygen O2 gas ventilation (g-EVA) or liquid ventilation (l-EVA) with oxygenated perfluorocarbon. After induction of type 1 respiratory failure, we analyzed the effectiveness of g-EVA and I-EVA in mouse and pig, followed by preclinical safety analysis in rat. FINDINGS: Both intra-rectal O2 gas and oxygenated liquid delivery were shown to provide vital rescue of experimental models of respiratory failure, improving survival, behavior, and systemic O2 level. A rodent and porcine model study confirmed the tolerable and repeatable features of an enema-like l-EVA procedure with no major signs of complications. CONCLUSIONS: EVA has proven effective in mammalians such that it oxygenated systemic circulation and ameliorated respiratory failure. Due to the proven safety of perfluorochemicals in clinics, EVA potentially provides an adjunctive means of oxygenation for patients under respiratory distress conditions. FUNDING: This work is funded by the Research Program on Emerging and Re-emerging Infectious Diseases, Research Projects on COVID-19 (JP20fk0108278, 20fk0108506h0001), from the Japan Agency for Medical Research and Development (AMED), to T.T.; Strategic Promotion for Practical Application of Innovative Medical Technology, Seeds A (A145), to T.T.; and KAKENHI 19K22657, to T.C.-Y. This research is partially supported by the AMED Translational Research Program; Strategic Promotion for Practical Application of Innovative Medical Technology (TR-SPRINT), to T.C.-Y.; and AMED JP18bm0704025h0001 (Program for Technological Innovation of Regenerative Medicine), to T.T.


Assuntos
COVID-19 , Insuficiência Respiratória , Animais , Humanos , Pulmão , Mamíferos , Camundongos , Oxigênio , Ratos , Respiração , Respiração Artificial/métodos , Insuficiência Respiratória/terapia , Suínos
5.
Gastroenterology ; 160(3): 831-846.e10, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33039464

RESUMO

BACKGROUND & AIMS: Preclinical identification of compounds at risk of causing drug induced liver injury (DILI) remains a significant challenge in drug development, highlighting a need for a predictive human system to study complicated DILI mechanism and susceptibility to individual drug. Here, we established a human liver organoid (HLO)-based screening model for analyzing DILI pathology at organoid resolution. METHODS: We first developed a reproducible method to generate HLO from storable foregut progenitors from pluripotent stem cell (PSC) lines with reproducible bile transport function. The qRT-PCR and single cell RNA-seq determined hepatocyte transcriptomic state in cells of HLO relative to primary hepatocytes. Histological and ultrastructural analyses were performed to evaluate micro-anatomical architecture. HLO based drug-induced liver injury assays were transformed into a 384 well based high-speed live imaging platform. RESULTS: HLO, generated from 10 different pluripotent stem cell lines, contain polarized immature hepatocytes with bile canaliculi-like architecture, establishing the unidirectional bile acid transport pathway. Single cell RNA-seq profiling identified diverse and zonal hepatocytic populations that in part emulate primary adult hepatocytes. The accumulation of fluorescent bile acid into organoid was impaired by CRISPR-Cas9-based gene editing and transporter inhibitor treatment with BSEP. Furthermore, we successfully developed an organoid based assay with multiplexed readouts measuring viability, cholestatic and/or mitochondrial toxicity with high predictive values for 238 marketed drugs at 4 different concentrations (Sensitivity: 88.7%, Specificity: 88.9%). LoT positively predicts genomic predisposition (CYP2C9∗2) for Bosentan-induced cholestasis. CONCLUSIONS: Liver organoid-based Toxicity screen (LoT) is a potential assay system for liver toxicology studies, facilitating compound optimization, mechanistic study, and precision medicine as well as drug screening applications.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/etiologia , Hepatócitos/efeitos dos fármacos , Ensaios de Triagem em Larga Escala/métodos , Fígado/efeitos dos fármacos , Organoides/efeitos dos fármacos , Linhagem Celular , Doença Hepática Induzida por Substâncias e Drogas/patologia , Avaliação Pré-Clínica de Medicamentos/métodos , Hepatócitos/patologia , Humanos , Fígado/citologia , Fígado/patologia , Organoides/patologia , Células-Tronco Pluripotentes/citologia , Testes de Toxicidade Aguda/métodos
6.
Cell Death Differ ; 28(1): 84-94, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33204011

RESUMO

The advent of organoid technology has enabled scientists and clinicians to utilize cells from primary tissues or pluripotent stem cells (PSCs) to grow self-organizing tissue systems, thus attaining cellular diversity, spatial organization, and functionality as found within digestive tracts. The development of human gastrointestinal (GI) and hepato-biliary-pancreatic organoids as an in-a-dish model present novel opportunities to study humanistic mechanisms of organogenesis, regeneration and pathogenesis. Herein, we review the recent portfolios of primary tissue-derived and PSC-derived organoids in the digestive systems. We also discuss the promise and challenges in disease modeling and drug development applications for digestive disorders.


Assuntos
Técnicas de Cultura de Células em Três Dimensões/métodos , Organoides/citologia , Engenharia Tecidual/métodos , Ductos Biliares/citologia , Diferenciação Celular/fisiologia , Humanos , Fígado/citologia , Organogênese/fisiologia , Organoides/metabolismo , Pâncreas/citologia , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo
7.
Methods Cell Biol ; 159: 47-68, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32586449

RESUMO

A growing number of in vitro hepatic models exist to study human genetics, liver biology, disease modeling and drug development and range from 2D hepatocytes to 3D multi-cellular tissues that are derived from human stem cells. However, stem cell-based models generally suffer from batch-, clone- and donor-dependent variability, hindering broader usage in diverse biomedical applications. To circumvent this challenge, we herein describe a reproducible protocol to generate human liver organoids in 20-25 days derived from pluripotent stem cells (PSCs). These organoids are intra-luminally polarized to form canalicular structures and are comprised of mainly hepatic epithelial cells, co-differentiated with stellate-like and hepatic macrophage-like cells that enables hepatic inflammatory disease modeling in vitro. These multi-lineage liver organoids express hepatocyte genes, secrete albumin and have vital metabolic functions. This protocol utilizes PSC derived 3D human liver organoids as a renewable, reproducible and personalized cell source, thus facilitating disease modeling and mechanistic studies with a future goal of developing novel therapeutics against currently intractable diseases.


Assuntos
Técnicas de Cultura de Células/métodos , Fígado/citologia , Organoides/citologia , Células-Tronco Pluripotentes/citologia , Diferenciação Celular/efeitos dos fármacos , Ácidos Graxos/farmacologia , Humanos , Organoides/efeitos dos fármacos , Células-Tronco Pluripotentes/efeitos dos fármacos
8.
Nature ; 574(7776): 112-116, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31554966

RESUMO

Organogenesis is a complex and interconnected process that is orchestrated by multiple boundary tissue interactions1-7. However, it remains unclear how individual, neighbouring components coordinate to establish an integral multi-organ structure. Here we report the continuous patterning and dynamic morphogenesis of hepatic, biliary and pancreatic structures, invaginating from a three-dimensional culture of human pluripotent stem cells. The boundary interactions between anterior and posterior gut spheroids differentiated from human pluripotent stem cells enables retinoic acid-dependent emergence of hepato-biliary-pancreatic organ domains specified at the foregut-midgut boundary organoids in the absence of extrinsic factors. Whereas transplant-derived tissues are dominated by midgut derivatives, long-term-cultured microdissected hepato-biliary-pancreatic organoids develop into segregated multi-organ anlages, which then recapitulate early morphogenetic events including the invagination and branching of three different and interconnected organ structures, reminiscent of tissues derived from mouse explanted foregut-midgut culture. Mis-segregation of multi-organ domains caused by a genetic mutation in HES1 abolishes the biliary specification potential in culture, as seen in vivo8,9. In sum, we demonstrate that the experimental multi-organ integrated model can be established by the juxtapositioning of foregut and midgut tissues, and potentially serves as a tractable, manipulatable and easily accessible model for the study of complex human endoderm organogenesis.


Assuntos
Sistema Biliar/embriologia , Intestinos/embriologia , Fígado/embriologia , Modelos Biológicos , Morfogênese , Pâncreas/embriologia , Animais , Sistema Biliar/citologia , Biomarcadores/análise , Biomarcadores/metabolismo , Padronização Corporal , Endoderma/citologia , Endoderma/embriologia , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Intestinos/citologia , Fígado/citologia , Masculino , Camundongos , Organoides/citologia , Organoides/embriologia , Pâncreas/citologia , Esferoides Celulares/citologia , Esferoides Celulares/metabolismo , Esferoides Celulares/transplante , Fatores de Transcrição HES-1/análise , Fatores de Transcrição HES-1/metabolismo
9.
Brain Res ; 1287: 47-57, 2009 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-19577550

RESUMO

The chemokines CCL2 and CCL7 are upregulated in the brain during several neurodegenerative and acute diseases associated with infiltration of peripheral leukocytes. Astrocytes can respond to inflammatory cytokines like IL-1beta and TNF-alpha by producing chemokines. This study aims to test the ability of IL-1beta and TNF-alpha to stimulate CCL2 and CCL7 protein production in rat astrocyte cultures, and to elucidate signaling pathways involved in the cytokine-stimulated chemokine upregulation. Astrocytes were stimulated with IL-1beta or TNF-alpha, and CCL2 and CCL7 levels determined by ELISA. Our results show that IL-1beta and TNF-alpha each stimulate production of the chemokines CCL2 and CCL7 in astrocytes in a concentration- and time-dependent manner, with CCL2 showing a more rapid and robust response to the cytokine treatment than CCL7. As a first step to determine the signaling pathways involved in CCL2 and CCL7 upregulation, we stimulated astrocytes with IL-1beta or TNF-alpha in the presence of selective inhibitors of MAPK pathways (SB203580 and SB202190 for p38, SP600125 for JNK, and U0126 for ERK) or NFkappaB pathways (MG-132 and SC-514). We found that NFkappaB pathways are important for the cytokine-stimulated CCL2 and CCL7 production, whereas MAPK pathways involving p38 and JNK, but not ERK, may also contribute but to a lesser extent. These data document for the first time that CCL7 protein production can be stimulated in astrocytes by cytokines, and that the upregulation may involve NFkappaB- and p38/JNK-regulated pathways. In addition, our results suggest that CCL2 and CCL7 share similarities in the signaling pathways necessary for their upregulation.


Assuntos
Astrócitos/metabolismo , Quimiocina CCL2/biossíntese , Quimiocina CCL7/biossíntese , Citocinas/fisiologia , Mediadores da Inflamação/fisiologia , Sistema de Sinalização das MAP Quinases/fisiologia , Quinases de Proteína Quinase Ativadas por Mitógeno/fisiologia , NF-kappa B/fisiologia , Animais , Astrócitos/enzimologia , Astrócitos/patologia , Células Cultivadas , Quimiocina CCL2/fisiologia , Quimiocina CCL7/fisiologia , Citocinas/biossíntese , Ratos , Ratos Sprague-Dawley
10.
CJEM ; 11(1): 14-22, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19166635

RESUMO

OBJECTIVE: A full understanding of an injury event and the mechanical forces involved should be important for predicting specific anatomical patterns of injury. Yet, information on the mechanism of injury is often overlooked as a predictor for specific anatomical injury in clinical decision-making. We measured the relationship between mechanism of injury and risk for cervical spine fracture. METHODS: Our case-control study is a secondary analysis of data collected from the Canadian C-Spine Rule (CCR) study. Data were collected from 1996 to 2002 and included patients presenting to the emergency departments of 9 tertiary care centres after sustaining acute blunt trauma to the head or neck. Cases are defined as patients who were categorized in the CCR study with a clinically important cervical spine fracture. Controls had no radiologic evidence of cervical spine injury. Bivariate and multivariate unconditional logistic regression models were used. Results are presented as odds ratios (ORs) with 95% confidence intervals (CIs). RESULTS: Among the 17,208 patients in the CCR study, 320 (2%)received a diagnosis of a cervical spine fracture. Axial loads, falls, diving incidents and nontraffic motorized vehicle collisions (e.g., collisions involving snowmobiles or all-terrain vehicles) were injury mechanisms that were significantly related to a higher risk of fracture. For motor vehicle collisions, the risk of cervical spine injury increased with the posted speed, being involved in a head-on collision or a rollover, or not wearing a seat belt (p < 0.05). The occurrence of cervical spine fracture was negligible in simple rear-end collisions (1 in 3694 cases; OR 0.015, 95% CI 0.002-0.104]). CONCLUSION: Our study quantitatively demonstrates the relationship between specific mechanisms of injury and the risk of a cervical spine fracture. A full understanding of the injury mechanism would assist providers of emergency health care in assessing risk for injury in trauma patients.


Assuntos
Vértebras Cervicais/lesões , Fraturas da Coluna Vertebral/etiologia , Acidentes por Quedas , Acidentes de Trânsito , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Traumatismos Cranianos Fechados/complicações , Humanos , Masculino , Pessoa de Meia-Idade , Lesões do Pescoço/complicações , Fraturas da Coluna Vertebral/fisiopatologia , Ferimentos não Penetrantes/complicações , Adulto Jovem
11.
J Neuroinflammation ; 5: 35, 2008 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-18706086

RESUMO

BACKGROUND: An endotoxin insult mimics a severe peripheral infection and recent evidence suggests that a single exposure can cause long-term cognitive deficits. A peripheral injection of LPS results in production of pro-inflammatory cytokines, such as IL-1beta and TNF-alpha, in the brain and periphery and these cytokines mediate many effects of the acute phase response including activation of the HPA axis. The chemokine MCP-1 is highly expressed during endotoxemia and although much is known about the importance of MCP-1 in peripheral inflammatory responses to LPS, information about MCP-1 and CNS responses to peripheral LPS is lacking. METHODS: C57Bl/6 mice were administered LPS by intraperitoneal (i.p.) injection, serum and brains were collected at several time points, and the time course of MCP-1 protein up-regulation was measured. To examine the role of MCP-1 in activation of the brain during acute systemic inflammation, we injected MCP-1 knockout (MCP-1-/-) or control C57Bl/6 (MCP-1+/+) mice with LPS i.p. and measured the levels of selected cytokines and chemokines in serum and brain extracts 6 hours later. Activated microglia were examined by CD45 immunohistochemistry, and serum corticosterone and ACTH levels were measured by enzyme immunoassay. RESULTS: We report that LPS injection induces a robust increase in MCP-1 protein levels in serum and brain, with peak brain levels reached at 6 hrs after LPS administration. MCP-1-/- mice injected with LPS showed higher levels of serum IL-1beta and TNF-alpha compared to LPS-treated MCP-1+/+ mice. In contrast, these MCP-1-/- mice showed significantly lower inductions of brain pro-inflammatory cytokines and chemokines, fewer activated microglia, and a reduction in serum corticosterone levels. CONCLUSION: MCP-1-/- mice have decreased brain inflammation after a peripheral LPS insult, despite an exaggerated peripheral response. These data demonstrate an important role for MCP-1 in regulation of brain inflammation after peripheral endotoxemia.


Assuntos
Quimiocina CCL2/metabolismo , Inflamação , Lipopolissacarídeos , Hormônio Adrenocorticotrópico/sangue , Animais , Encéfalo/anatomia & histologia , Encéfalo/metabolismo , Quimiocina CCL2/antagonistas & inibidores , Quimiocina CCL2/genética , Quimiocinas CC/imunologia , Corticosterona/imunologia , Feminino , Inflamação/induzido quimicamente , Inflamação/imunologia , Interleucina-1beta/imunologia , Lipopolissacarídeos/imunologia , Lipopolissacarídeos/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator de Necrose Tumoral alfa/imunologia
12.
Int Rev Neurobiol ; 82: 277-96, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17678967

RESUMO

Inflammation is the body's defense mechanism against threats such as bacterial infection, undesirable substances, injury, or illness. The process is complex and involves a variety of specialized cells that mobilize to neutralize and dispose of the injurious material so that the body can heal. In the brain, a similar inflammation process occurs when glia, especially astrocytes and microglia, undergo activation in response to stimuli such as injury, illness, or infection. Like peripheral immune cells, glia in the central nervous system also increase production of inflammatory cytokines and neutralize the threat to the brain. This brain inflammation, or neuroinflammation, is generally beneficial and allows the brain to respond to changes in its environment and dispose of damaged tissue or undesirable substances. Unfortunately, this beneficial process sometimes gets out of balance and the neuroinflammatory process persists, even when the inflammation-provoking stimulus is eliminated. Uncontrolled chronic neuroinflammation is now known to play a key role in the progression of damage in a number of neurodegenerative diseases. Thus, overproduction of proinflammatory cytokines offers a pathophysiology progression mechanism that can be targeted in new therapeutic development for multiple neurodegenerative diseases. We summarize in this chapter the evidence supporting proinflammatory cytokine upregulation as a therapeutic target for neurodegenerative disorders, with a focus on Alzheimer's disease. In addition, we discuss the drug discovery process and two approaches, function-driven and target-based, that show promise for development of neuroinflammation-targeted, disease-modifying therapeutics for multiple neurodegenerative disorders.


Assuntos
Citocinas/fisiologia , Mediadores da Inflamação/fisiologia , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/fisiopatologia , Neuroglia/efeitos dos fármacos , Neuroglia/fisiologia , Doença de Alzheimer/patologia , Doença de Alzheimer/fisiopatologia , Animais , Sistemas de Liberação de Medicamentos , Humanos , Fosforilação , Transdução de Sinais/fisiologia , Regulação para Cima/efeitos dos fármacos , Proteínas Quinases p38 Ativadas por Mitógeno/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA