Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 12(5)2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36903847

RESUMO

Performance of the APSIM (Agricultural Production Systems sIMulator) wheat model was assessed to simulate winter wheat phenology, biomass, grain yield, and nitrogen (N) uptake for its potential to optimize fertilizer applications for optimal crop growth and minimal environmental degradation. The calibration and evaluation dataset had 144 and 72 different field growing conditions (location (~7) × year (~5) × sowing date (2) × N treatment (7-13)), respectively, and included seven cultivars. APSIM simulated phenological stages satisfactorily with both model calibration and evaluation data sets with r2 of 0.97 and RMSE of 3.98-4.15 BBCH (BASF, Bayer, Ciba-Geigy, and Hoechst) scale. Simulations for biomass accumulation and N uptake during early growth stages (BBCH 28-49) were also reasonable with r2 of 0.65 and RMSE of 1510 kg ha-1, and r2 of 0.64-0.66 and RMSE of 28-39 kg N ha-1, respectively, with a higher accuracy during booting (BBCH 45-47). Overestimation of N uptake during stem elongation (BBCH 32-39) was attributed to (1) high inter-annual variability in simulations, and (2) high sensitivity of parameters regulating N uptake from soil. Calibration accuracy of grain yield and grain N was higher than that of biomass and N uptake at the early growth stages. APSIM wheat model showed high potential for optimizing fertilizer management in winter wheat cultivation in Northern Europe.

2.
Sci Total Environ ; 816: 151518, 2022 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-34762963

RESUMO

Nitrate (N) leaching from intensively managed cropping systems is of environmental concern and it varies at local scale. To evaluate the performance of agricultural practices at this scale, there is a need to develop comprehensive assessments of N leaching and the N leaching reduction potential of mitigation measures. A model-based analysis was performed to (i) estimate N leaching from Danish cropping systems, representing 20 crop rotations, 3 soil types, 2 climates and 3-4 levels of manure (slurry)-to-fertilizer ratios, but with same available N (according to regulatory N fertilization norms), and (ii) appraise mitigation potential of on-farm measures (i.e. catch crops, early sowing of winter cereals) to reduce N leaching. The analysis was performed using a process-based agro-environmental model (Daisy). Simulated average N leaching over 24 years ranged from 16 to 85 kg N/ha/y for different crop rotations. Rotations with a higher proportion of spring crops were more prone to leaching than rotations having a higher proportion of winter cereals and semi-perennial grass-clover leys. N leaching decreased with increasing soil clay content under all conditions. The effect of two climates (different regions, mainly differing in precipitation) on N leaching was generally similar, with slight variation across rotations. Supplying a part of the available N as manure-N resulted in similar N leaching as mineral fertilizer N alone during the simulation period. Among the mitigation measures, both undersown and autumn sown catch crops were effective. Effectiveness of measures also depended on their place and frequency of occurrence in a rotation. Adopting catch crops during the most leaching-prone years and with higher frequency were effective choices. This analysis provided essential data-driven knowledge on N leaching risk, and potential of leaching reduction options. These results can serve as a supplementary guiding-tool for farmers to plan management practices, and for legislators to design farm-specific regulatory measures.


Assuntos
Agricultura , Nitratos , Dinamarca , Fertilizantes , Nitratos/análise , Nitrogênio/análise , Solo
3.
J Environ Qual ; 49(2): 440-449, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33016427

RESUMO

The use of suctions cups is a common practice for estimating nitrate (NO3 -N) leaching under agricultural systems despite the various uncertainties associated with the approach. One major uncertainty is water flux, which is required for calculating NO3 -N leaching loads from measured concentrations. Another problem is the interpolation of NO3 -N concentrations between measurement days. We investigated how differences in water flux, obtained from two different models (EVACROP and APSIM), affect NO3 -N leaching loads. The effect of interpolation of NO3 -N concentrations based on days or drainage was also addressed. The models were set up according to a 2-yr field experiment with spring barley (Hordeum vulgare L. Quinch) with different levels of N fertilization rates on a loamy soil at Flakkebjerg, Denmark. Due to small differences in measured NO3 -N concentrations between sequential samplings, the method of interpolation did not significantly affect NO3 -N leaching in the two periods investigated. Although there is no standard against which leaching losses from different approaches can be tested, results highlight that the modeling of water uptake as affected by N supply influences the amount of drainage and thus calculated NO3 -N leaching. Therefore, for experiments with varying N fertilization levels, the APSIM model, which accounts for N nutrition on crop water use, is likely more accurate. For common fertilization rates, the simpler EVACROP seems appropriate. Thus, when using suction cup data for testing models or for evaluating mitigation options for nitrate leaching, the use of an appropriate model for estimating water fluxes is important.


Assuntos
Fertilizantes/análise , Nitratos/análise , Agricultura , Solo , Sucção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA