Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 479-480: 138-50, 2014 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-24561293

RESUMO

The development of effective measures to stabilize atmospheric CO2 concentration and mitigate negative impacts of climate change requires accurate quantification of the spatial variation and magnitude of the terrestrial carbon (C) flux. However, the spatial pattern and strength of terrestrial C sinks and sources remain uncertain. In this study, we designed a spatially-explicit agroecosystem modeling system by integrating the Environmental Policy Integrated Climate (EPIC) model with multiple sources of geospatial and surveyed datasets (including crop type map, elevation, climate forcing, fertilizer application, tillage type and distribution, and crop planting and harvesting date), and applied it to examine the sensitivity of cropland C flux simulations to two widely used soil databases (i.e. State Soil Geographic-STATSGO of a scale of 1:250,000 and Soil Survey Geographic-SSURGO of a scale of 1:24,000) in Iowa, USA. To efficiently execute numerous EPIC runs resulting from the use of high resolution spatial data (56m), we developed a parallelized version of EPIC. Both STATSGO and SSURGO led to similar simulations of crop yields and Net Ecosystem Production (NEP) estimates at the State level. However, substantial differences were observed at the county and sub-county (grid) levels. In general, the fine resolution SSURGO data outperformed the coarse resolution STATSGO data for county-scale crop-yield simulation, and within STATSGO, the area-weighted approach provided more accurate results. Further analysis showed that spatial distribution and magnitude of simulated NEP were more sensitive to the resolution difference between SSURGO and STATSGO at the county or grid scale. For over 60% of the cropland areas in Iowa, the deviations between STATSGO- and SSURGO-derived NEP were larger than 1MgCha(-1)yr(-1), or about half of the average cropland NEP, highlighting the significant uncertainty in spatial distribution and magnitude of simulated C fluxes resulting from differences in soil data resolution.


Assuntos
Ciclo do Carbono , Ecossistema , Monitoramento Ambiental/métodos , Modelos Teóricos , Solo/química , Carbono , Geografia
2.
PLoS One ; 8(1): e55560, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23383225

RESUMO

Three advanced technologies to measure soil carbon (C) density (g C m(-2)) are deployed in the field and the results compared against those obtained by the dry combustion (DC) method. The advanced methods are: a) Laser Induced Breakdown Spectroscopy (LIBS), b) Diffuse Reflectance Fourier Transform Infrared Spectroscopy (DRIFTS), and c) Inelastic Neutron Scattering (INS). The measurements and soil samples were acquired at Beltsville, MD, USA and at Centro International para el Mejoramiento del Maíz y el Trigo (CIMMYT) at El Batán, Mexico. At Beltsville, soil samples were extracted at three depth intervals (0-5, 5-15, and 15-30 cm) and processed for analysis in the field with the LIBS and DRIFTS instruments. The INS instrument determined soil C density to a depth of 30 cm via scanning and stationary measurements. Subsequently, soil core samples were analyzed in the laboratory for soil bulk density (kg m(-3)), C concentration (g kg(-1)) by DC, and results reported as soil C density (kg m(-2)). Results from each technique were derived independently and contributed to a blind test against results from the reference (DC) method. A similar procedure was employed at CIMMYT in Mexico employing but only with the LIBS and DRIFTS instruments. Following conversion to common units, we found that the LIBS, DRIFTS, and INS results can be compared directly with those obtained by the DC method. The first two methods and the standard DC require soil sampling and need soil bulk density information to convert soil C concentrations to soil C densities while the INS method does not require soil sampling. We conclude that, in comparison with the DC method, the three instruments (a) showed acceptable performances although further work is needed to improve calibration techniques and (b) demonstrated their portability and their capacity to perform under field conditions.


Assuntos
Carbono/análise , Solo/análise , Análise Espectral/métodos , Monitoramento Ambiental/métodos , Maryland , Difração de Nêutrons/instrumentação , Difração de Nêutrons/métodos , Espalhamento a Baixo Ângulo , Solo/química , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Análise Espectral/instrumentação
3.
PLoS One ; 7(11): e50441, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23189202

RESUMO

High-latitude northern ecosystems are experiencing rapid climate changes, and represent a large potential climate feedback because of their high soil carbon densities and shifting disturbance regimes. A significant carbon flow from these ecosystems is soil respiration (R(S), the flow of carbon dioxide, generated by plant roots and soil fauna, from the soil surface to atmosphere), and any change in the high-latitude carbon cycle might thus be reflected in R(S) observed in the field. This study used two variants of a machine-learning algorithm and least squares regression to examine how remotely-sensed canopy greenness (NDVI), climate, and other variables are coupled to annual R(S) based on 105 observations from 64 circumpolar sites in a global database. The addition of NDVI roughly doubled model performance, with the best-performing models explaining ∼62% of observed R(S) variability. We show that early-summer NDVI from previous years is generally the best single predictor of R(S), and is better than current-year temperature or moisture. This implies significant temporal lags between these variables, with multi-year carbon pools exerting large-scale effects. Areas of decreasing R(S) are spatially correlated with browning boreal forests and warmer temperatures, particularly in western North America. We suggest that total circumpolar R(S) may have slowed by ∼5% over the last decade, depressed by forest stress and mortality, which in turn decrease R(S). Arctic tundra may exhibit a significantly different response, but few data are available with which to test this. Combining large-scale remote observations and small-scale field measurements, as done here, has the potential to allow inferences about the temporal and spatial complexity of the large-scale response of northern ecosystems to changing climate.


Assuntos
Geografia , Solo , Árvores , Regiões Árticas , Inteligência Artificial , Clima , Modelos Teóricos , Solo/química
5.
Proc Natl Acad Sci U S A ; 107(46): 19633-8, 2010 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-20921413

RESUMO

Land-use change to meet 21st-century demands for food, fuel, and fiber will depend on many interactive factors, including global policies limiting anthropogenic climate change and realized improvements in agricultural productivity. Climate-change mitigation policies will alter the decision-making environment for land management, and changes in agricultural productivity will influence cultivated land expansion. We explore to what extent future increases in agricultural productivity might offset conversion of tropical forest lands to crop lands under a climate mitigation policy and a contrasting no-policy scenario in a global integrated assessment model. The Global Change Assessment Model is applied here to simulate a mitigation policy that stabilizes radiative forcing at 4.5 W m(-2) (approximately 526 ppm CO(2)) in the year 2100 by introducing a price for all greenhouse gas emissions, including those from land use. These scenarios are simulated with several cases of future agricultural productivity growth rates and the results downscaled to produce gridded maps of potential land-use change. We find that tropical forests are preserved near their present-day extent, and bioenergy crops emerge as an effective mitigation option, only in cases in which a climate mitigation policy that includes an economic price for land-use emissions is in place, and in which agricultural productivity growth continues throughout the century. We find that idealized land-use emissions price assumptions are most effective at limiting deforestation, even when cropland area must increase to meet future food demand. These findings emphasize the importance of accounting for feedbacks from land-use change emissions in global climate change mitigation strategies.


Assuntos
Agricultura/tendências , Mudança Climática , Conservação de Recursos Energéticos/métodos , Conservação de Recursos Energéticos/tendências , Clima Tropical , Biocombustíveis/análise , Dióxido de Carbono/análise , Modelos Teóricos , Zea mays/economia
6.
Nature ; 463(7282): 747-56, 2010 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-20148028

RESUMO

Advances in the science and observation of climate change are providing a clearer understanding of the inherent variability of Earth's climate system and its likely response to human and natural influences. The implications of climate change for the environment and society will depend not only on the response of the Earth system to changes in radiative forcings, but also on how humankind responds through changes in technology, economies, lifestyle and policy. Extensive uncertainties exist in future forcings of and responses to climate change, necessitating the use of scenarios of the future to explore the potential consequences of different response options. To date, such scenarios have not adequately examined crucial possibilities, such as climate change mitigation and adaptation, and have relied on research processes that slowed the exchange of information among physical, biological and social scientists. Here we describe a new process for creating plausible scenarios to investigate some of the most challenging and important questions about climate change confronting the global community.


Assuntos
Ecologia/tendências , Aquecimento Global , Aquecimento Global/prevenção & controle , Aquecimento Global/estatística & dados numéricos , Atividades Humanas , Medição de Risco , Emissões de Veículos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA