Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nature ; 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38987602

RESUMO

Subtropical gyre (STG) depth and strength are controlled by wind stress curl and surface buoyancy forcing1,2. Modern hydrographic data reveal that the STG extends to a depth of about 1 km in the Northwest Atlantic, with its maximum depth defined by the base of the subtropical thermocline. Despite the likelihood of greater wind stress curl and surface buoyancy loss during the Last Glacial Maximum (LGM)3, previous work suggests minimal change in the depth of the glacial STG4. Here we show a sharp glacial water mass boundary between 33° N and 36° N extending down to between 2.0 and 2.5 km-approximately 1 km deeper than today. Our findings arise from benthic foraminiferal δ18O profiles from sediment cores in two depth transects at Cape Hatteras (36-39° N) and Blake Outer Ridge (29-34° N) in the Northwest Atlantic. This result suggests that the STG, including the Gulf Stream, was deeper and stronger during the LGM than at present, which we attribute to increased glacial wind stress curl, as supported by climate model simulations, as well as greater glacial production of denser subtropical mode waters (STMWs). Our data suggest (1) that subtropical waters probably contributed to the geochemical signature of what is conventionally identified as Glacial North Atlantic Intermediate Water (GNAIW)5-7 and (2) the STG helped sustain continued buoyancy loss, water mass conversion and northwards meridional heat transport (MHT) in the glacial North Atlantic.

2.
Science ; 382(6672): 834-839, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-37972177

RESUMO

Instrumental observations of subsurface ocean warming imply that ocean heat uptake has slowed 20th-century surface warming. We present high-resolution records from subpolar North Atlantic sediments that are consistent with instrumental observations of surface and deep warming/freshening and in addition reconstruct the surface-deep relation of the last 1200 years. Sites from ~1300 meters and deeper suggest an ~0.5 degrees celsius cooling across the Medieval Climate Anomaly to Little Ice Age transition that began ~1350 ± 50 common era (CE), whereas surface records suggest asynchronous cooling onset spanning ~600 years. These data suggest that ocean circulation integrates surface variability that is transmitted rapidly to depth by the Atlantic Meridional Ocean Circulation, implying that the ocean moderated Earth's surface temperature throughout the last millennium as it does today.

3.
Sci Rep ; 10(1): 20727, 2020 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-33244023

RESUMO

Size is a fundamental cellular trait that is important in determining phytoplankton physiological and ecological processes. Fossil coccospheres, the external calcite structure produced by the excretion of interlocking plates by the phytoplankton coccolithophores, can provide a rare window into cell size in the past. Coccospheres are delicate however and are therefore poorly preserved in sediment. We demonstrate a novel technique combining imaging flow cytometry and cross-polarised light (ISX+PL) to rapidly and reliably visually isolate and quantify the morphological characteristics of coccospheres from marine sediment by exploiting their unique optical and morphological properties. Imaging flow cytometry combines the morphological information provided by microscopy with high sample numbers associated with flow cytometry. High throughput imaging overcomes the constraints of labour-intensive manual microscopy and allows statistically robust analysis of morphological features and coccosphere concentration despite low coccosphere concentrations in sediments. Applying this technique to the fine-fraction of sediments, hundreds of coccospheres can be visually isolated quickly with minimal sample preparation. This approach has the potential to enable rapid processing of down-core sediment records and/or high spatial coverage from surface sediments and may prove valuable in investigating the interplay between climate change and coccolithophore physiological/ecological response.


Assuntos
Citometria de Fluxo/métodos , Sedimentos Geológicos/análise , Microscopia/métodos , Fitoplâncton/isolamento & purificação , Fitoplâncton/fisiologia , Carbonato de Cálcio/química , Fósseis
4.
Nature ; 556(7700): 227-230, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29643484

RESUMO

The Atlantic meridional overturning circulation (AMOC) is a system of ocean currents that has an essential role in Earth's climate, redistributing heat and influencing the carbon cycle1, 2. The AMOC has been shown to be weakening in recent years 1 ; this decline may reflect decadal-scale variability in convection in the Labrador Sea, but short observational datasets preclude a longer-term perspective on the modern state and variability of Labrador Sea convection and the AMOC1, 3-5. Here we provide several lines of palaeo-oceanographic evidence that Labrador Sea deep convection and the AMOC have been anomalously weak over the past 150 years or so (since the end of the Little Ice Age, LIA, approximately AD 1850) compared with the preceding 1,500 years. Our palaeoclimate reconstructions indicate that the transition occurred either as a predominantly abrupt shift towards the end of the LIA, or as a more gradual, continued decline over the past 150 years; this ambiguity probably arises from non-AMOC influences on the various proxies or from the different sensitivities of these proxies to individual components of the AMOC. We suggest that enhanced freshwater fluxes from the Arctic and Nordic seas towards the end of the LIA-sourced from melting glaciers and thickened sea ice that developed earlier in the LIA-weakened Labrador Sea convection and the AMOC. The lack of a subsequent recovery may have resulted from hysteresis or from twentieth-century melting of the Greenland Ice Sheet 6 . Our results suggest that recent decadal variability in Labrador Sea convection and the AMOC has occurred during an atypical, weak background state. Future work should aim to constrain the roles of internal climate variability and early anthropogenic forcing in the AMOC weakening described here.


Assuntos
Convecção , Oceanos e Mares , Água do Mar/análise , Movimentos da Água , Regiões Árticas , Oceano Atlântico , Mudança Climática/estatística & dados numéricos , Água Doce/análise , Groenlândia , História do Século XV , História do Século XVI , História do Século XVII , História do Século XVIII , História do Século XIX , História do Século XX , História do Século XXI , História Medieval , Camada de Gelo/química , Terra Nova e Labrador , Reprodutibilidade dos Testes , Fatores de Tempo
5.
Nature ; 520(7547): 333-6, 2015 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-25877202

RESUMO

Abrupt climate change is a ubiquitous feature of the Late Pleistocene epoch. In particular, the sequence of Dansgaard-Oeschger events (repeated transitions between warm interstadial and cold stadial conditions), as recorded by ice cores in Greenland, are thought to be linked to changes in the mode of overturning circulation in the Atlantic Ocean. Moreover, the observed correspondence between North Atlantic cold events and increased iceberg calving and dispersal from ice sheets surrounding the North Atlantic has inspired many ocean and climate modelling studies that make use of freshwater forcing scenarios to simulate abrupt change across the North Atlantic region and beyond. On the other hand, previous studies identified an apparent lag between North Atlantic cooling events and the appearance of ice-rafted debris over the last glacial cycle, leading to the hypothesis that iceberg discharge may be a consequence of stadial conditions rather than the cause. Here we further establish this relationship and demonstrate a systematic delay between pronounced surface cooling and the arrival of ice-rafted debris at a site southwest of Iceland over the past four glacial cycles, implying that in general icebergs arrived too late to have triggered cooling. Instead we suggest that--on the basis of our comparisons of ice-rafted debris and polar planktonic foraminifera--abrupt transitions to stadial conditions should be considered as a nonlinear response to more gradual cooling across the North Atlantic. Although the freshwater derived from melting icebergs may provide a positive feedback for enhancing and or prolonging stadial conditions, it does not trigger northern stadial events.


Assuntos
Mudança Climática/história , Temperatura Baixa , Camada de Gelo , Oceano Atlântico , Foraminíferos/isolamento & purificação , Groenlândia , História Antiga , Islândia , Modelos Teóricos , Fatores de Tempo , Movimentos da Água
6.
Science ; 331(6014): 202-5, 2011 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-21233385

RESUMO

Deepwater formation in the North Atlantic by open-ocean convection is an essential component of the overturning circulation of the Atlantic Ocean, which helps regulate global climate. We use water-column radiocarbon reconstructions to examine changes in northeast Atlantic convection since the Last Glacial Maximum. During cold intervals, we infer a reduction in open-ocean convection and an associated incursion of an extremely radiocarbon ((14)C)-depleted water mass, interpreted to be Antarctic Intermediate Water. Comparing the timing of deep convection changes in the northeast and northwest Atlantic, we suggest that, despite a strong control on Greenland temperature by northeast Atlantic convection, reduced open-ocean convection in both the northwest and northeast Atlantic is necessary to account for contemporaneous perturbations in atmospheric circulation.

7.
Nature ; 457(7230): 711-4, 2009 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-19194447

RESUMO

The Atlantic meridional overturning circulation (AMOC) transports warm salty surface waters to high latitudes, where they cool, sink and return southwards at depth. Through its attendant meridional heat transport, the AMOC helps maintain a warm northwestern European climate, and acts as a control on the global climate. Past climate fluctuations during the Holocene epoch ( approximately 11,700 years ago to the present) have been linked with changes in North Atlantic Ocean circulation. The behaviour of the surface flowing salty water that helped drive overturning during past climatic changes is, however, not well known. Here we investigate the temperature and salinity changes of a substantial surface inflow to a region of deep-water formation throughout the Holocene. We find that the inflow has undergone millennial-scale variations in temperature and salinity ( approximately 3.5 degrees C and approximately 1.5 practical salinity units, respectively) most probably controlled by subpolar gyre dynamics. The temperature and salinity variations correlate with previously reported periods of rapid climate change. The inflow becomes more saline during enhanced freshwater flux to the subpolar North Atlantic. Model studies predict a weakening of AMOC in response to enhanced Arctic freshwater fluxes, although the inflow can compensate on decadal timescales by becoming more saline. Our data suggest that such a negative feedback mechanism may have operated during past intervals of climate change.


Assuntos
Salinidade , Água do Mar/química , Temperatura , Movimentos da Água , Oceano Atlântico , Carbonato de Cálcio/análise , Clima , Retroalimentação , Água Doce/análise , Água Doce/química , História Antiga , Isótopos de Oxigênio , Plâncton/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA