Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(9): e2319436121, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38386712

RESUMO

Terrestrial enhanced weathering (EW) of silicate rocks, such as crushed basalt, on farmlands is a promising scalable atmospheric carbon dioxide removal (CDR) strategy that urgently requires performance assessment with commercial farming practices. We report findings from a large-scale replicated EW field trial across a typical maize-soybean rotation on an experimental farm in the heart of the United Sates Corn Belt over 4 y (2016 to 2020). We show an average combined loss of major cations (Ca2+ and Mg2+) from crushed basalt applied each fall over 4 y (50 t ha-1 y-1) gave a conservative time-integrated cumulative CDR potential of 10.5 ± 3.8 t CO2 ha-1. Maize and soybean yields increased significantly (P < 0.05) by 12 to 16% with EW following improved soil fertility, decreased soil acidification, and upregulation of root nutrient transport genes. Yield enhancements with EW were achieved with significantly (P < 0.05) increased key micro- and macronutrient concentrations (including potassium, magnesium, manganese, phosphorus, and zinc), thus improving or maintaining crop nutritional status. We observed no significant increase in the content of trace metals in grains of maize or soybean or soil exchangeable pools relative to controls. Our findings suggest that widespread adoption of EW across farming sectors has the potential to contribute significantly to net-zero greenhouse gas emissions goals while simultaneously improving food and soil security.


Assuntos
Silicatos , Oligoelementos , Zea mays , Agricultura , Solo , Dióxido de Carbono , Glycine max
2.
J Exp Bot ; 74(17): 5363-5373, 2023 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-37314063

RESUMO

In response to herbivory, many grasses, including crops such as wheat, accumulate significant levels of silicon (Si) as an antiherbivore defence. Damage-induced increases in Si can be localized in damaged leaves or be more systemic, but the mechanisms leading to these differences in Si distribution remain untested. Ten genetically diverse wheat landraces (Triticum aestivum) were used to assess genotypic variation in Si induction in response to mechanical damage and how this was affected by exogenous Si supply. Total and soluble Si levels were measured in damaged and undamaged leaves as well as in the phloem to test how Si was allocated to different parts of the plant after damage. Localized, but not systemic, induction of Si defences occurred, and was more pronounced when plants had supplemental Si. Damaged plants had significant increases in Si concentration in their damaged leaves, while the Si concentration in undamaged leaves decreased, such that there was no difference in the average Si concentration of damaged and undamaged plants. The increased Si in damaged leaves was due to the redirection of soluble Si, present in the phloem, from undamaged to damaged plant parts, potentially a more cost-effective defence mechanism for plants than increased Si uptake.


Assuntos
Silício , Triticum , Triticum/metabolismo , Silício/metabolismo , Poaceae/metabolismo , Plantas/metabolismo , Herbivoria , Folhas de Planta/metabolismo
3.
J Exp Bot ; 74(10): 3094-3103, 2023 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-36840921

RESUMO

Plant ecologists and molecular biologists have long considered the hypothesis of a trade-off between plant growth and defence separately. In particular, how genes thought to control the growth-defence trade-off at the molecular level relate to trait-based frameworks in functional ecology, such as the slow-fast plant economics spectrum, is unknown. We grew 49 phenotypically diverse rice genotypes in pots under optimal conditions and measured growth-related functional traits and the constitutive expression of 11 genes involved in plant defence. We also quantified the concentration of silicon (Si) in leaves to estimate silica-based defences. Rice genotypes were aligned along a slow-fast continuum, with slow-growing, late-flowering genotypes versus fast-growing, early-flowering genotypes. Leaf dry matter content and leaf Si concentrations were not aligned with this axis and negatively correlated with each other. Live-fast genotypes exhibited greater expression of OsNPR1, a regulator of the salicylic acid pathway that promotes plant defence while suppressing plant growth. These genotypes also exhibited greater expression of SPL7 and GH3.2, which are also involved in both stress resistance and growth. Our results do not support the hypothesis of a growth-defence trade-off when leaf Si and leaf dry matter content are considered, but they do when hormonal pathway genes are considered. We demonstrate the benefits of combining ecological and molecular approaches to elucidate the growth-defence trade-off, opening new avenues for plant breeding and crop science.


Assuntos
Oryza , Genótipo , Oryza/genética , Melhoramento Vegetal , Desenvolvimento Vegetal , Folhas de Planta/metabolismo , Plantas
4.
Rice (N Y) ; 15(1): 8, 2022 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-35112196

RESUMO

Silicon (Si) fertiliser can improve rice (Oryza sativa) tolerance to salinity. The rate of Si uptake and its associated benefits are known to differ between plant genotypes, but, to date, little research has been done on how the benefits, and hence the economic feasibility, of Si fertilisation varies between cultivars. In this study, a range of rice cultivars was grown both hydroponically and in soil, at different levels of Si and NaCl, to determine cultivar variation in the response to Si. There was significant variation in the effect of Si, such that Si alleviated salt-induced growth inhibition in some cultivars, while others were unaffected, or even negatively impacted. Thus, when assessing the benefits of Si supplementation in alleviating salt stress, it is essential to collect cultivar-specific data, including yield, since changes in biomass were not always correlated with those seen for yield. Root Si content was found to be more important than shoot Si in protecting rice against salinity stress, with a root Si level of 0.5-0.9% determined as having maximum stress alleviation by Si. A cost-benefit analysis indicated that Si fertilisation is beneficial in mild stress, high-yield conditions but is not cost-effective in low-yield production systems.

5.
Funct Ecol ; 36(11): 2833-2844, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36606113

RESUMO

Estimating plasticity of leaf silicon (Si) in response to abiotic and biotic factors underpins our comprehension of plant defences and stress resistance in natural and agroecosystems. However, how nitrogen (N) addition and intraspecific plant-plant interactions affect Si concentration remains unclear.We grew 19 durum wheat genotypes (Triticum turgidum ssp. durum) in pots, either alone or in intra- or intergenotypic cultures of two individuals, and with or without N. Above-ground biomass, plant height and leaf [Si] were quantified at the beginning of the flowering stage.Nitrogen addition decreased leaf [Si] for most genotypes, proportionally to the biomass increase. Si plasticity to plant-plant interactions varied significantly among genotypes, with both increases and decreases in leaf [Si] when mixed with a neighbour, regardless of the mixture type (intra-/intergenotype). Besides, increased leaf [Si] in response to plant-plant interactions was associated with increased plant height.Our results suggest the occurrence of both facilitation and competition for Si uptake from the rhizosphere in wheat mixtures. Future research should identify which leaf and root traits characterise facilitating neighbours for Si acquisition. We also show that Si could be involved in height gain in response to intraspecific competition, possibly for increasing light capture. This important finding opens up new research directions on Si and plant-plant interactions in both natural ecosystems and agroecosystems. More generally, our results stress the need to explore leaf Si plasticity in responses to both abiotic and biotic factors to understand plant stress resistance. Read the free Plain Language Summary for this article on the Journal blog.

6.
Stress Biol ; 2(1): 45, 2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37676370

RESUMO

Potassium (K) is the most abundant cation in the vast majority of plants. It is required in large quantities which, in an agronomic context, typically necessitates application of K in the form of potash or other K fertilisers. Recently, the price of K fertiliser has risen dramatically, a situation that is paralleled by increasing K deficiency of soils around the globe. A potential solution to this problem is to reduce crop K fertiliser dependency by replacing it with sodium (Na) fertiliser which carries a much smaller price tag. In this paper we discuss the physiological roles of K and Na and the implications of Na fertilisation for crop cultivation and soil management. By using greenhouse growth assays we show distinct growth promotion after Na fertilisation in wheat, tomato, oilseed and sorghum. Our results also show that up to 60% of tissue K can be substituted by Na without growth penalty. Based on these data, simple economic models suggest that (part) replacement of K fertiliser with Na fertiliser leads to considerable savings.

7.
Plants (Basel) ; 10(4)2021 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-33924159

RESUMO

Drought stress reduces annual global wheat yields by 20%. Silicon (Si) fertilisation has been proposed to improve plant drought stress tolerance. However, it is currently unknown if and how Si affects different wheat landraces, especially with respect to their innate Si accumulation properties. In this study, significant and consistent differences in Si accumulation between landraces were identified, allowing for the classification of high Si accumulators and low Si accumulators. Landraces from the two accumulation groups were then used to investigate the effect of Si during osmotic and drought stress. Si was found to improve growth marginally in high Si accumulators during osmotic stress. However, no significant effect of Si on growth during drought stress was found. It was further found that osmotic stress decreased Si accumulation for all landraces whereas drought increased it. Overall, these results suggest that the beneficial effect of Si commonly reported in similar studies is not universal and that the application of Si fertiliser as a solution to agricultural drought stress requires detailed understanding of genotype-specific responses to Si.

8.
Front Plant Sci ; 11: 1221, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32973824

RESUMO

Salinity affects around 20% of all arable land while an even larger area suffers from recurrent drought. Together these stresses suppress global crop production by as much as 50% and their impacts are predicted to be exacerbated by climate change. Infrastructure and management practices can mitigate these detrimental impacts, but are costly. Crop breeding for improved tolerance has had some success but is progressing slowly and is not keeping pace with climate change. In contrast, Silicon (Si) is known to improve plant tolerance to a range of stresses and could provide a sustainable, rapid and cost-effective mitigation method. The exact mechanisms are still under debate but it appears Si can relieve salt stress via accumulation in the root apoplast where it reduces "bypass flow of ions to the shoot. Si-dependent drought relief has been linked to lowered root hydraulic conductance and reduction of water loss through transpiration. However, many alternative mechanisms may play a role such as altered gene expression and increased accumulation of compatible solutes. Oxidative damage that occurs under stress conditions can be reduced by Si through increased antioxidative enzymes while Si-improved photosynthesis has also been reported. Si fertilizer can be produced relatively cheaply and to assess its economic viability to improve crop stress tolerance we present a cost-benefit analysis. It suggests that Si fertilization may be beneficial in many agronomic settings but may be beyond the means of smallholder farmers in developing countries. Si application may also have disadvantages, such as increased soil pH, less efficient conversion of crops into biofuel and reduced digestibility of animal fodder. These issues may hamper uptake of Si fertilization as a routine agronomic practice. Here, we critically evaluate recent literature, quantifying the most significant physiological changes associated with Si in plants under drought and salinity stress. Analyses show that metrics associated with photosynthesis, water balance and oxidative stress all improve when Si is present during plant exposure to salinity and drought. We further conclude that most of these changes can be explained by apoplastic roles of Si while there is as yet little evidence to support biochemical roles of this element.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA