RESUMO
Gene-based burden tests are a popular and powerful approach for analysis of exome-wide association studies. These approaches combine sets of variants within a gene into a single burden score that is then tested for association. Typically, a range of burden scores are calculated and tested across a range of annotation classes and frequency bins. Correlation between these tests can complicate the multiple testing correction and hamper interpretation of the results. We introduce a method called the sparse burden association test (SBAT) that tests the joint set of burden scores under the assumption that causal burden scores act in the same effect direction. The method simultaneously assesses the significance of the model fit and selects the set of burden scores that best explain the association at the same time. Using simulated data, we show that the method is well calibrated and highlight scenarios where the test outperforms existing gene-based tests. We apply the method to 73 quantitative traits from the UK Biobank, showing that SBAT is a valuable additional gene-based test when combined with other existing approaches. This test is implemented in the REGENIE software.
Assuntos
Estudo de Associação Genômica Ampla , Humanos , Estudo de Associação Genômica Ampla/métodos , Análise dos Mínimos Quadrados , Software , Modelos Genéticos , Exoma/genética , Variação Genética , Simulação por ComputadorRESUMO
Whole-genome sequencing (WGS), whole-exome sequencing (WES) and array genotyping with imputation (IMP) are common strategies for assessing genetic variation and its association with medically relevant phenotypes. To date, there has been no systematic empirical assessment of the yield of these approaches when applied to hundreds of thousands of samples to enable the discovery of complex trait genetic signals. Using data for 100 complex traits from 149,195 individuals in the UK Biobank, we systematically compare the relative yield of these strategies in genetic association studies. We find that WGS and WES combined with arrays and imputation (WES + IMP) have the largest association yield. Although WGS results in an approximately fivefold increase in the total number of assayed variants over WES + IMP, the number of detected signals differed by only 1% for both single-variant and gene-based association analyses. Given that WES + IMP typically results in savings of lab and computational time and resources expended per sample, we evaluate the potential benefits of applying WES + IMP to larger samples. When we extend our WES + IMP analyses to 468,169 UK Biobank individuals, we observe an approximately fourfold increase in association signals with the threefold increase in sample size. We conclude that prioritizing WES + IMP and large sample sizes rather than contemporary short-read WGS alternatives will maximize the number of discoveries in genetic association studies.
RESUMO
BACKGROUND: Chronic kidney disease (CKD) is highly prevalent in Central America, and genetic factors may contribute to CKD risk. To understand the influences of genetic admixture on CKD susceptibility, we conducted an admixture mapping screening of CKD traits and risk factors in US Hispanic and Latino individuals from Central America country of origin. METHODS: We analyzed 1023 participants of HCHS/SOL (Hispanic Community Health Study/Study of Latinos) who reported 4 grandparents originating from the same Central America country. Ancestry admixture findings were validated on 8191 African Americans from WHI (Women's Health Initiative), 3141 American Indians from SHS (Strong Heart Study), and over 1.1 million European individuals from a multistudy meta-analysis. RESULTS: We identified 3 novel genomic regions for albuminuria (chromosome 14q24.2), CKD (chromosome 6q25.3), and type 2 diabetes (chromosome 3q22.2). The 14q24.2 locus driven by a Native American ancestry had a protective effect on albuminuria and consisted of 2 nearby regions spanning the RGS6 gene. Variants at this locus were validated in American Indians. The 6q25.3 African ancestry-derived locus, encompassing the ARID1B gene, was associated with increased risk for CKD and replicated in African Americans through admixture mapping. The European ancestry type 2 diabetes locus at 3q22.2, encompassing the EPHB1 and KY genes, was validated in European individuals through variant association. CONCLUSIONS: US Hispanic/Latino populations are culturally and genetically diverse. This study focusing on Central America grandparent country of origin provides new loci discovery and insights into the ancestry-of-origin influences on CKD and risk factors in US Hispanic and Latino individuals.
Assuntos
Hispânico ou Latino , Insuficiência Renal Crônica , Humanos , Feminino , América Central/etnologia , Hispânico ou Latino/genética , Insuficiência Renal Crônica/genética , Insuficiência Renal Crônica/etnologia , Masculino , Fatores de Risco , Pessoa de Meia-Idade , Albuminúria/genética , Albuminúria/etnologia , Idoso , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/epidemiologia , Diabetes Mellitus Tipo 2/etnologia , Polimorfismo de Nucleotídeo Único , Mapeamento Cromossômico , Predisposição Genética para Doença , Adulto , População Branca/genética , Negro ou Afro-Americano/genéticaRESUMO
Rare coding variants that substantially affect function provide insights into the biology of a gene1-3. However, ascertaining the frequency of such variants requires large sample sizes4-8. Here we present a catalogue of human protein-coding variation, derived from exome sequencing of 983,578 individuals across diverse populations. In total, 23% of the Regeneron Genetics Center Million Exome (RGC-ME) data come from individuals of African, East Asian, Indigenous American, Middle Eastern and South Asian ancestry. The catalogue includes more than 10.4 million missense and 1.1 million predicted loss-of-function (pLOF) variants. We identify individuals with rare biallelic pLOF variants in 4,848 genes, 1,751 of which have not been previously reported. From precise quantitative estimates of selection against heterozygous loss of function (LOF), we identify 3,988 LOF-intolerant genes, including 86 that were previously assessed as tolerant and 1,153 that lack established disease annotation. We also define regions of missense depletion at high resolution. Notably, 1,482 genes have regions that are depleted of missense variants despite being tolerant of pLOF variants. Finally, we estimate that 3% of individuals have a clinically actionable genetic variant, and that 11,773 variants reported in ClinVar with unknown significance are likely to be deleterious cryptic splice sites. To facilitate variant interpretation and genetics-informed precision medicine, we make this resource of coding variation from the RGC-ME dataset publicly accessible through a variant allele frequency browser.
Assuntos
Exoma , Variação Genética , Proteínas , Humanos , Alelos , Exoma/genética , Sequenciamento do Exoma , Frequência do Gene , Variação Genética/genética , Heterozigoto , Mutação com Perda de Função/genética , Mutação de Sentido Incorreto/genética , Fases de Leitura Aberta/genética , Proteínas/genética , Sítios de Splice de RNA/genética , Medicina de PrecisãoRESUMO
Principal component analysis (PCA) is widely used to control for population structure in genome-wide association studies (GWAS). Top principal components (PCs) typically reflect population structure, but challenges arise in deciding how many PCs are needed and ensuring that PCs do not capture other artifacts such as regions with atypical linkage disequilibrium (LD). In response to the latter, many groups suggest performing LD pruning or excluding known high LD regions prior to PCA. However, these suggestions are not universally implemented and the implications for GWAS are not fully understood, especially in the context of admixed populations. In this paper, we investigate the impact of pre-processing and the number of PCs included in GWAS models in African American samples from the Women's Women's Health Initiative SNP Health Association Resource and two Trans-Omics for Precision Medicine Whole Genome Sequencing Project contributing studies (Jackson Heart Study and Genetic Epidemiology of Chronic Obstructive Pulmonary Disease Study). In all three samples, we find the first PC is highly correlated with genome-wide ancestry whereas later PCs often capture local genomic features. The pattern of which, and how many, genetic variants are highly correlated with individual PCs differs from what has been observed in prior studies focused on European populations and leads to distinct downstream consequences: adjusting for such PCs yields biased effect size estimates and elevated rates of spurious associations due to the phenomenon of collider bias. Excluding high LD regions identified in previous studies does not resolve these issues. LD pruning proves more effective, but the optimal choice of thresholds varies across datasets. Altogether, our work highlights unique issues that arise when using PCA to control for ancestral heterogeneity in admixed populations and demonstrates the importance of careful pre-processing and diagnostics to ensure that PCs capturing multiple local genomic features are not included in GWAS models.
RESUMO
Polygenic risk scores (PRS) have shown successes in clinics, but most PRS methods focus only on participants with distinct primary continental ancestry without accommodating recently-admixed individuals with mosaic continental ancestry backgrounds for different segments of their genomes. Here, we develop GAUDI, a novel penalized-regression-based method specifically designed for admixed individuals. GAUDI explicitly models ancestry-differential effects while borrowing information across segments with shared ancestry in admixed genomes. We demonstrate marked advantages of GAUDI over other methods through comprehensive simulation and real data analyses for traits with associated variants exhibiting ancestral-differential effects. Leveraging data from the Women's Health Initiative study, we show that GAUDI improves PRS prediction of white blood cell count and C-reactive protein in African Americans by > 64% compared to alternative methods, and even outperforms PRS-CSx with large European GWAS for some scenarios. We believe GAUDI will be a valuable tool to mitigate disparities in PRS performance in admixed individuals.
Assuntos
Negro ou Afro-Americano , Estratificação de Risco Genético , Software , Humanos , Negro ou Afro-Americano/genética , Simulação por Computador , Predisposição Genética para Doença , Genoma Humano , Estudo de Associação Genômica Ampla/métodos , Fenótipo , Fatores de RiscoRESUMO
The Mexico City Prospective Study is a prospective cohort of more than 150,000 adults recruited two decades ago from the urban districts of Coyoacán and Iztapalapa in Mexico City1. Here we generated genotype and exome-sequencing data for all individuals and whole-genome sequencing data for 9,950 selected individuals. We describe high levels of relatedness and substantial heterogeneity in ancestry composition across individuals. Most sequenced individuals had admixed Indigenous American, European and African ancestry, with extensive admixture from Indigenous populations in central, southern and southeastern Mexico. Indigenous Mexican segments of the genome had lower levels of coding variation but an excess of homozygous loss-of-function variants compared with segments of African and European origin. We estimated ancestry-specific allele frequencies at 142 million genomic variants, with an effective sample size of 91,856 for Indigenous Mexican ancestry at exome variants, all available through a public browser. Using whole-genome sequencing, we developed an imputation reference panel that outperforms existing panels at common variants in individuals with high proportions of central, southern and southeastern Indigenous Mexican ancestry. Our work illustrates the value of genetic studies in diverse populations and provides foundational imputation and allele frequency resources for future genetic studies in Mexico and in the United States, where the Hispanic/Latino population is predominantly of Mexican descent.
Assuntos
Sequenciamento do Exoma , Genoma Humano , Genótipo , Hispânico ou Latino , Adulto , Humanos , África/etnologia , América/etnologia , Europa (Continente)/etnologia , Frequência do Gene/genética , Genética Populacional , Genoma Humano/genética , Técnicas de Genotipagem , Hispânico ou Latino/genética , Homozigoto , Mutação com Perda de Função/genética , México , Estudos ProspectivosRESUMO
BACKGROUND: Sex differences in Parkinson's disease (PD) risk are well-known. However, the role of sex chromosomes in the development and progression of PD is still unclear. OBJECTIVE: The objective of this study was to perform the first X-chromosome-wide association study for PD risk in a Latin American cohort. METHODS: We used data from three admixed cohorts: (1) Latin American Research consortium on the Genetics of Parkinson's Disease (n = 1504) as discover cohort, and (2) Latino cohort from International Parkinson Disease Genomics Consortium (n = 155) and (3) Bambui Aging cohort (n = 1442) as replication cohorts. We also developed an X-chromosome framework specifically designed for admixed populations. RESULTS: We identified eight linkage disequilibrium regions associated with PD. We replicated one of these regions (top variant rs525496; discovery odds ratio [95% confidence interval]: 0.60 [0.478-0.77], P = 3.13 × 10-5 replication odds ratio: 0.60 [0.37-0.98], P = 0.04). rs5525496 is associated with multiple expression quantitative trait loci in brain and non-brain tissues, including RAB9B, H2BFM, TSMB15B, and GLRA4, but colocalization analysis suggests that rs5525496 may not mediate risk by expression of these genes. We also replicated a previous X-chromosome-wide association study finding (rs28602900), showing that this variant is associated with PD in non-European populations. CONCLUSIONS: Our results reinforce the importance of including X-chromosome and diverse populations in genetic studies. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Assuntos
Cromossomos Humanos X , Doença de Parkinson , Feminino , Humanos , Masculino , Estudo de Associação Genômica Ampla , Hispânico ou Latino , América Latina , Doença de Parkinson/genética , Fatores Sexuais , Cromossomos Humanos X/genética , Desequilíbrio de Ligação/genéticaRESUMO
Alzheimer disease (AD) is the most common form of senile dementia, with high incidence late in life in many populations including Caribbean Hispanic (CH) populations. Such admixed populations, descended from more than one ancestral population, can present challenges for genetic studies, including limited sample sizes and unique analytical constraints. Therefore, CH populations and other admixed populations have not been well represented in studies of AD, and much of the genetic variation contributing to AD risk in these populations remains unknown. Here, we conduct genome-wide analysis of AD in multiplex CH families from the Alzheimer Disease Sequencing Project (ADSP). We developed, validated, and applied an implementation of a logistic mixed model for admixture mapping with binary traits that leverages genetic ancestry to identify ancestry-of-origin loci contributing to AD. We identified three loci on chromosome 13q33.3 associated with reduced risk of AD, where associations were driven by Native American (NAM) ancestry. This AD admixture mapping signal spans the FAM155A, ABHD13, TNFSF13B, LIG4, and MYO16 genes and was supported by evidence for association in an independent sample from the Alzheimer's Genetics in Argentina-Alzheimer Argentina consortium (AGA-ALZAR) study with considerable NAM ancestry. We also provide evidence of NAM haplotypes and key variants within 13q33.3 that segregate with AD in the ADSP whole-genome sequencing data. Interestingly, the widely used genome-wide association study approach failed to identify associations in this region. Our findings underscore the potential of leveraging genetic ancestry diversity in recently admixed populations to improve genetic mapping, in this case for AD-relevant loci.
Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/genética , Estudo de Associação Genômica Ampla , Hispânico ou Latino/genética , Loci Gênicos/genética , EtnicidadeRESUMO
Coding variants that have significant impact on function can provide insights into the biology of a gene but are typically rare in the population. Identifying and ascertaining the frequency of such rare variants requires very large sample sizes. Here, we present the largest catalog of human protein-coding variation to date, derived from exome sequencing of 985,830 individuals of diverse ancestry to serve as a rich resource for studying rare coding variants. Individuals of African, Admixed American, East Asian, Middle Eastern, and South Asian ancestry account for 20% of this Exome dataset. Our catalog of variants includes approximately 10.5 million missense (54% novel) and 1.1 million predicted loss-of-function (pLOF) variants (65% novel, 53% observed only once). We identified individuals with rare homozygous pLOF variants in 4,874 genes, and for 1,838 of these this work is the first to document at least one pLOF homozygote. Additional insights from the RGC-ME dataset include 1) improved estimates of selection against heterozygous loss-of-function and identification of 3,459 genes intolerant to loss-of-function, 83 of which were previously assessed as tolerant to loss-of-function and 1,241 that lack disease annotations; 2) identification of regions depleted of missense variation in 457 genes that are tolerant to loss-of-function; 3) functional interpretation for 10,708 variants of unknown or conflicting significance reported in ClinVar as cryptic splice sites using splicing score thresholds based on empirical variant deleteriousness scores derived from RGC-ME; and 4) an observation that approximately 3% of sequenced individuals carry a clinically actionable genetic variant in the ACMG SF 3.1 list of genes. We make this important resource of coding variation available to the public through a variant allele frequency browser. We anticipate that this report and the RGC-ME dataset will serve as a valuable reference for understanding rare coding variation and help advance precision medicine efforts.
RESUMO
Importance: Numerous studies have established the association of the common APOE ε2 and APOE ε4 alleles with Alzheimer disease (AD) risk across ancestries. Studies of the interaction of these alleles with other amino acid changes on APOE in non-European ancestries are lacking and may improve ancestry-specific risk prediction. Objective: To determine whether APOE amino acid changes specific to individuals of African ancestry modulate AD risk. Design, Setting, and Participants: Case-control study including 31â¯929 participants and using a sequenced discovery sample (Alzheimer Disease Sequencing Project; stage 1) followed by 2 microarray imputed data sets derived from the Alzheimer Disease Genetic Consortium (stage 2, internal replication) and the Million Veteran Program (stage 3, external validation). This study combined case-control, family-based, population-based, and longitudinal AD cohorts, which recruited participants (1991-2022) in primarily US-based studies with 1 US/Nigerian study. Across all stages, individuals included in this study were of African ancestry. Exposures: Two APOE missense variants (R145C and R150H) were assessed, stratified by APOE genotype. Main Outcomes and Measures: The primary outcome was AD case-control status, and secondary outcomes included age at AD onset. Results: Stage 1 included 2888 cases (median age, 77 [IQR, 71-83] years; 31.3% male) and 4957 controls (median age, 77 [IQR, 71-83] years; 28.0% male). In stage 2, across multiple cohorts, 1201 cases (median age, 75 [IQR, 69-81] years; 30.8% male) and 2744 controls (median age, 80 [IQR, 75-84] years; 31.4% male) were included. In stage 3, 733 cases (median age, 79.4 [IQR, 73.8-86.5] years; 97.0% male) and 19â¯406 controls (median age, 71.9 [IQR, 68.4-75.8] years; 94.5% male) were included. In ε3/ε4-stratified analyses of stage 1, R145C was present in 52 individuals with AD (4.8%) and 19 controls (1.5%); R145C was associated with an increased risk of AD (odds ratio [OR], 3.01; 95% CI, 1.87-4.85; P = 6.0 × 10-6) and was associated with a reported younger age at AD onset (ß, -5.87 years; 95% CI, -8.35 to -3.4 years; P = 3.4 × 10-6). Association with increased AD risk was replicated in stage 2 (R145C was present in 23 individuals with AD [4.7%] and 21 controls [2.7%]; OR, 2.20; 95% CI, 1.04-4.65; P = .04) and was concordant in stage 3 (R145C was present in 11 individuals with AD [3.8%] and 149 controls [2.7%]; OR, 1.90; 95% CI, 0.99-3.64; P = .051). Association with earlier AD onset was replicated in stage 2 (ß, -5.23 years; 95% CI, -9.58 to -0.87 years; P = .02) and stage 3 (ß, -10.15 years; 95% CI, -15.66 to -4.64 years; P = 4.0 × 10-4). No significant associations were observed in other APOE strata for R145C or in any APOE strata for R150H. Conclusions and Relevance: In this exploratory analysis, the APOE ε3[R145C] missense variant was associated with an increased risk of AD among individuals of African ancestry with the ε3/ε4 genotype. With additional external validation, these findings may inform AD genetic risk assessment in individuals of African ancestry.
Assuntos
Doença de Alzheimer , Apolipoproteína E4 , População Negra , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Alelos , Doença de Alzheimer/genética , Apolipoproteína E4/genética , Apolipoproteínas E/genética , População Negra/genética , Estudos de Casos e Controles , Genótipo , Fatores de Risco , Mutação de Sentido IncorretoRESUMO
Sex differences in Parkinson Disease (PD) risk are well-known. However, it is still unclear the role of sex chromosomes in the development and progression of PD. We performed the first X-chromosome Wide Association Study (XWAS) for PD risk in Latin American individuals. We used data from three admixed cohorts: (i) Latin American Research consortium on the GEnetics of Parkinson's Disease (n=1,504) as discover cohort and (ii) Latino cohort from International Parkinson Disease Genomics Consortium (n = 155) and (iii) Bambui Aging cohort (n= 1,442) as replication cohorts. After developing a X-chromosome framework specifically designed for admixed populations, we identified eight linkage disequilibrium regions associated with PD. We fully replicated one of these regions (top variant rs525496; discovery OR [95%CI]: 0.60 [0.478 - 0.77], p = 3.13 × 10 -5 ; replication OR: 0.60 [0.37-0.98], p = 0.04). rs525496 is an expression quantitative trait loci for several genes expressed in brain tissues, including RAB9B, H2BFM, TSMB15B and GLRA4 . We also replicated a previous XWAS finding (rs28602900), showing that this variant is associated with PD in non-European populations. Our results reinforce the importance of including X-chromosome and diverse populations in genetic studies.
RESUMO
BACKGROUND: Large-scale Parkinson's disease (PD) genome-wide association studies (GWAS) have, until recently, only been conducted on subjects with European-ancestry. Consequently, polygenic risk scores (PRS) constructed using PD GWAS data are likely to be less predictive when applied to non-European cohorts. METHODS: Using GWAS data from the largest study to date, we constructed a PD PRS for a Latino PD cohort (1497 subjects from LARGE-PD) and tested it for association with PD status and age at onset. We validated the PRS performance by testing it in an independent Latino cohort (448 subjects) and by repeating the analysis in LARGE-PD with the addition of 440 external Peruvian controls. We also tested SNCA haplotypes for association with PD risk in LARGE-PD and a European-ancestry PD cohort. RESULTS: The GWAS-significant PD PRS had an area under the receiver-operator curve (AUC) of 0.668 (95% CI: 0.640-0.695) in LARGE-PD. The inclusion of external Peruvian controls mitigated this result, dropping the AUC 0.632 (95% CI: 0.607-0.657). At the SNCA locus, haplotypes differ by ancestry. Ancestry-specific SNCA haplotypes were associated with PD status in both LARGE-PD and the European-ancestry cohort (p-value < 0.05). These haplotypes both include the rs356182 G-allele, but only share 14% of their variants overall. CONCLUSION: The PD PRS has potential for PD risk prediction in Latinos, but variability caused by admixture patterns and bias in a European-ancestry PD PRS data limits its utility. The inclusion of diverse subjects can help elucidate PD risk loci and improve risk prediction in non-European cohorts.
Assuntos
Estudo de Associação Genômica Ampla , Doença de Parkinson , Predisposição Genética para Doença/genética , Haplótipos , Hispânico ou Latino/genética , Humanos , Doença de Parkinson/genética , Polimorfismo de Nucleotídeo Único/genética , Fatores de Risco , alfa-Sinucleína/genéticaRESUMO
While polygenic risk scores (PRSs) enable early identification of genetic risk for chronic obstructive pulmonary disease (COPD), predictive performance is limited when the discovery and target populations are not well matched. Hypothesizing that the biological mechanisms of disease are shared across ancestry groups, we introduce a PrediXcan-derived polygenic transcriptome risk score (PTRS) to improve cross-ethnic portability of risk prediction. We constructed the PTRS using summary statistics from application of PrediXcan on large-scale GWASs of lung function (forced expiratory volume in 1 s [FEV1] and its ratio to forced vital capacity [FEV1/FVC]) in the UK Biobank. We examined prediction performance and cross-ethnic portability of PTRS through smoking-stratified analyses both on 29,381 multi-ethnic participants from TOPMed population/family-based cohorts and on 11,771 multi-ethnic participants from TOPMed COPD-enriched studies. Analyses were carried out for two dichotomous COPD traits (moderate-to-severe and severe COPD) and two quantitative lung function traits (FEV1 and FEV1/FVC). While the proposed PTRS showed weaker associations with disease than PRS for European ancestry, the PTRS showed stronger association with COPD than PRS for African Americans (e.g., odds ratio [OR] = 1.24 [95% confidence interval [CI]: 1.08-1.43] for PTRS versus 1.10 [0.96-1.26] for PRS among heavy smokers with ≥ 40 pack-years of smoking) for moderate-to-severe COPD. Cross-ethnic portability of the PTRS was significantly higher than the PRS (paired t test p < 2.2 × 10-16 with portability gains ranging from 5% to 28%) for both dichotomous COPD traits and across all smoking strata. Our study demonstrates the value of PTRS for improved cross-ethnic portability compared to PRS in predicting COPD risk.
Assuntos
Doença Pulmonar Obstrutiva Crônica , Transcriptoma , Humanos , Pulmão , National Heart, Lung, and Blood Institute (U.S.) , Doença Pulmonar Obstrutiva Crônica/genética , Fatores de Risco , Estados Unidos/epidemiologiaRESUMO
Genetically regulated gene expression has helped elucidate the biological mechanisms underlying complex traits. Improved high-throughput technology allows similar interrogation of the genetically regulated proteome for understanding complex trait mechanisms. Here, we used the Trans-omics for Precision Medicine (TOPMed) Multi-omics pilot study, which comprises data from Multi-Ethnic Study of Atherosclerosis (MESA), to optimize genetic predictors of the plasma proteome for genetically regulated proteome-wide association studies (PWAS) in diverse populations. We built predictive models for protein abundances using data collected in TOPMed MESA, for which we have measured 1,305 proteins by a SOMAscan assay. We compared predictive models built via elastic net regression to models integrating posterior inclusion probabilities estimated by fine-mapping SNPs prior to elastic net. In order to investigate the transferability of predictive models across ancestries, we built protein prediction models in all four of the TOPMed MESA populations, African American (n = 183), Chinese (n = 71), European (n = 416), and Hispanic/Latino (n = 301), as well as in all populations combined. As expected, fine-mapping produced more significant protein prediction models, especially in African ancestries populations, potentially increasing opportunity for discovery. When we tested our TOPMed MESA models in the independent European INTERVAL study, fine-mapping improved cross-ancestries prediction for some proteins. Using GWAS summary statistics from the Population Architecture using Genomics and Epidemiology (PAGE) study, which comprises â¼50,000 Hispanic/Latinos, African Americans, Asians, Native Hawaiians, and Native Americans, we applied S-PrediXcan to perform PWAS for 28 complex traits. The most protein-trait associations were discovered, colocalized, and replicated in large independent GWAS using proteome prediction model training populations with similar ancestries to PAGE. At current training population sample sizes, performance between baseline and fine-mapped protein prediction models in PWAS was similar, highlighting the utility of elastic net. Our predictive models in diverse populations are publicly available for use in proteome mapping methods at https://doi.org/10.5281/zenodo.4837327.
Assuntos
Aterosclerose/genética , Estudos de Associação Genética , Modelos Genéticos , Proteínas/genética , Proteoma/genética , Aterosclerose/etnologia , Feminino , Frequência do Gene , Humanos , Masculino , Projetos Piloto , Polimorfismo de Nucleotídeo Único , Locos de Características QuantitativasRESUMO
BACKGROUND: Sleep problems (SP) are common in cancer patients but have not been previously assessed in patients receiving immune checkpoint inhibitors (ICI). METHODS: We collected questionnaire data on sleep apnea risk, insomnia, and general sleep patterns. We used an adjusted multivariate Poisson regression to calculate prevalence ratios (PRs) and associated 95% confidence intervals (CIs) for associations between these SP and metastatic versus localized cancer stage (M1 vs. M0), and adjusted logistic regression models to calculate ORs for associations between SP with the number of ICI infusions completed (6 + vs. < 6). RESULTS: Among 32 patients who received ICI treatment, the prevalence of low, intermediate, and high-risk OSA risk was 36%, 42%, and 21%, respectively. Overall, 58% of participants reported clinically significant insomnia. We did not find a significant association between intermediate or high risk OSA (vs. low risk) and metastatic cancer status (PR = 1.01 (95% CI: 0.28, 3.67)). Patients in the cohort who reported taking > 15 min to fall asleep were 3.6 times more likely to be diagnosed with metastatic cancer compared to those reporting shorter sleep latency (95% CI (1.74, 7.35)). We did not find a significant association between SP and number of ICI infusions completed. CONCLUSION: Our data associating sleep apnea risk, insomnia, and sleep patterns with more advanced cancer encourages further exploration in larger-scale observational studies and suggests interventional clinical trials focused on sleep quality improvement that could result in better outcomes for these patients.
Assuntos
Neoplasias , Apneia Obstrutiva do Sono , Distúrbios do Início e da Manutenção do Sono , Humanos , Neoplasias/complicações , Projetos Piloto , Polissonografia , Apneia Obstrutiva do Sono/epidemiologia , Distúrbios do Início e da Manutenção do Sono/complicações , Distúrbios do Início e da Manutenção do Sono/etiologiaRESUMO
BACKGROUND: Sleep problems (SP) can indicate underlying sleep disorders, such as obstructive sleep apnea, which may adversely impact cancer risk and mortality. METHODS: We assessed the association of baseline and longitudinal sleep apnea and insomnia symptoms with incident cancer (N = 3930) and cancer mortality (N = 4580) in the Cardiovascular Health Study. We used Cox proportional hazards regression to calculate adjusted hazard ratios (HR) and 95% confidence intervals (CI) to evaluate the associations. RESULTS: Overall, 885 incident cancers and 804 cancer deaths were identified over a median follow-up of 12 and 14 years, respectively. Compared to participants who reported no sleep apnea symptoms, the risk of incident cancer was inversely associated [(HR (95%CI)] with snoring [0.84 (0.71, 0.99)]. We noted an elevated prostate cancer incidence for apnea [2.34 (1.32, 4.15)] and snoring [1.69 (1.11, 2.57)]. We also noted an elevated HR for lymphatic or hematopoietic cancers [daytime sleepiness: 1.81 (1.06, 3.08)]. We found an inverse relationship for cancer mortality with respect to snoring [0.73 (0.62, 0.8)] and apnea [(0.69 (0.51, 0.94))]. We noted a significant inverse relationship between difficulty falling asleep and colorectal cancer death [0.32 (0.15, 0.69)] and snoring with lung cancer death [0.56 (0.35, 0.89)]. CONCLUSIONS: The relationship between SP and cancer risk and mortality was heterogeneous. Larger prospective studies addressing more cancer sites, molecular type-specific associations, and better longitudinal SP assessments are needed for improved delineation of SP-cancer risk dyad.
Assuntos
Neoplasias , Síndromes da Apneia do Sono , Transtornos do Sono-Vigília , Humanos , Incidência , Masculino , Neoplasias/complicações , Neoplasias/epidemiologia , Estudos Prospectivos , Síndromes da Apneia do Sono/complicações , Síndromes da Apneia do Sono/epidemiologia , Transtornos do Sono-Vigília/complicações , Transtornos do Sono-Vigília/epidemiologia , Ronco/complicações , Ronco/epidemiologiaRESUMO
RESULTS: Abruption cases were more likely to experience preeclampsia, have shorter gestational age, and deliver infants with lower birthweight compared with controls. Models with MFGI effects provided improved fit than models with only maternal and fetal genotype main effects for SNP rs12530904 (p-value = 1.2e-04) in calcium/calmodulin-dependent protein kinase [CaM kinase] II beta (CAMK2B), and, SNP rs73136795 (p-value = 1.9e-04) in peroxisome proliferator-activated receptor-gamma (PPARG), both MB genes. We identified 320 SNPs in 45 maternally-imprinted genes (including potassium voltage-gated channel subfamily Q member 1 [KCNQ1], neurotrimin [NTM], and, ATPase phospholipid transporting 10 A [ATP10A]) associated with abruption. Top hits included rs2012323 (p-value = 1.6E-16) and rs12221520 (p-value1.3e-13) in KCNQ1, rs8036892 (p-value = 9.3E-17) and rs188497582 in ATP10A, rs12589854 (p-value = 2.9E-11) and rs80203467 (p-value = 4.6e-11) in maternally expressed 8, small nucleolar RNA host (MEG8), and rs138281088 in solute carrier family 22 member 2 (SLC22A2) (p-value = 6.8e-9). CONCLUSIONS: We identified novel PA-related maternal-fetal MB gene interactions and imprinting effects that highlight the role of the fetus in PA risk development. Findings can inform mechanistic investigations to understand the pathogenesis of PA.
Assuntos
Descolamento Prematuro da Placenta , Impressão Genômica , Descolamento Prematuro da Placenta/genética , Feminino , Feto , Humanos , Placenta , Polimorfismo de Nucleotídeo Único , GravidezRESUMO
BACKGROUND: Admixture mapping is a powerful approach for gene mapping of complex traits that leverages the diverse genetic ancestry in populations with recent admixture, such as Hispanic or Latino individuals in the United States. These individuals have an increased risk of CKD. METHODS: We performed genome-wide admixture mapping for both CKD and eGFR in a sample of 12,601 participants from the Hispanic Community Health Study/Study of Latinos, with validation in a sample of 8191 Black participants from the Women's Health Initiative (WHI). We also compared the findings with those from a conventional genome-wide association study. RESULTS: Three novel ancestry-of-origin loci were identified on chromosomes 2, 14, and 15 for CKD and eGFR. The chromosome 2 locus comprises two European ancestry regions encompassing the FSHR and NRXN1 genes, with European ancestry at this locus associated with increased CKD risk. The chromosome 14 locus, found within the DLK1-DIO3 imprinted domain, was associated with lower eGFR and driven by European ancestry. The eGFR-associated locus on chromosome 15 included intronic variants of RYR3 and was within an African-specific genomic region associated with higher eGFR. The genome-wide association study failed to identify significant associations in these regions. We validated the chromosome 14 and 15 loci associated with eGFR in the WHI Black participants. CONCLUSIONS: This study provides evidence of shared ancestry-specific genomic regions influencing eGFR in Hispanic or Latino individuals and Black individuals and illustrates the potential for leveraging genetic ancestry in recently admixed populations for the discovery of novel candidate loci for kidney phenotypes.