Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Antibiotics (Basel) ; 11(12)2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36551348

RESUMO

The rise of antibiotic-resistant bacteria is among the biggest challenges in human and veterinary medicine. One of the major factors that contributes to resistance is use of frontline clinical antibiotics in veterinary practices. To avoid this problem, searching for antimicrobials aimed at veterinary applications is becoming especially important. Thiopeptide micrococcin P1 and leaderless peptide EntEJ97s are two different bacteriocins that are very active against many gram-positive bacteria; however, sensitive bacteria can rapidly develop resistance towards those bacteriocins. To overcome this problem, we searched for synergy between those bacteriocins and conventional antibiotics against methicillin-resistant Staphylococcus pseudintermedius (MRSP): a common pathogen in animal skin infections. The two bacteriocins acted synergistically with each other and with penicillin G against MRSP clinical isolates in both planktonic and biofilm assays; they also prevented resistance development. The therapeutic potential was further validated in a murine skin infection model that showed that a combination of micrococcin P1, EntEJ97s and penicillin G reduced cell-forming units of MRSP by 2-log10 CFU/g. Taken together, our data show that a combination of bacteriocins with conventional antibiotics can not only prevent resistance development but also pave the way to revitalize some old, less useful antibiotics, such as penicillin, which by itself has no effect on methicillin-resistant pathogens.

2.
Front Plant Sci ; 13: 1025422, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36570914

RESUMO

Grey mold caused by the necrotrophic fungal pathogen Botrytis cinerea can affect leaves, flowers, and berries of strawberry, causing severe pre- and postharvest damage. The defense elicitor ß-aminobutyric acid (BABA) is reported to induce resistance against B. cinerea and many other pathogens in several crop plants. Surprisingly, BABA soil drench of woodland strawberry (Fragaria vesca) plants two days before B. cinerea inoculation caused increased infection in leaf tissues, suggesting that BABA induce systemic susceptibility in F. vesca. To understand the molecular mechanisms involved in B. cinerea susceptibility in leaves of F. vesca plants soil drenched with BABA, we used RNA sequencing to characterize the transcriptional reprogramming 24 h post-inoculation. The number of differentially expressed genes (DEGs) in infected vs. uninfected leaf tissue in BABA-treated plants was 5205 (2237 upregulated and 2968 downregulated). Upregulated genes were involved in pathogen recognition, defense response signaling, and biosynthesis of secondary metabolites (terpenoid and phenylpropanoid pathways), while downregulated genes were involved in photosynthesis and response to auxin. In control plants not treated with BABA, we found a total of 5300 DEGs (2461 upregulated and 2839 downregulated) after infection. Most of these corresponded to those in infected leaves of BABA-treated plants but a small subset of DEGs, including genes involved in 'response to biologic stimulus', 'photosynthesis' and 'chlorophyll biosynthesis and metabolism', differed significantly between treatments and could play a role in the induced susceptibility of BABA-treated plants.

3.
Front Immunol ; 12: 676534, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34276663

RESUMO

Antibiotic-resistant bacterial pathogens have become a serious threat worldwide. One of these pathogens is methicillin-resistant Staphylococcus aureus (MRSA), a major cause of skin and soft tissue infections. In this study we identified a strain of Staphylococcus equorum producing a substance with high antimicrobial activity against many Gram-positive bacteria, including MRSA. By mass spectrometry and whole genome sequencing the antimicrobial substance was identified as the thiopeptide bacteriocin micrococcin P1 (MP1). Based on its properties we developed a one-step purification protocol resulting in high yield (15 mg/L) and high purity (98%) of MP1. For shorter incubation times (5-7 h) MP1 was very potent against MRSA but the inhibitory effect was overshadowed by resistance development during longer incubation time (24h or more). To overcome this problem a synergy study was performed with a number of commercially available antibiotics. Among the antibiotics tested, the combination of MP1 and rifampicin gave the best synergistic effect, with MIC values 25 and 60 times lower than for the individual drugs, respectively. To assess the therapeutic potential of the MP1-rifampicin combination, we used a murine skin infection model based on the use of the multidrug-resistant luciferase-tagged MRSA strain Xen31. As expected, neither of the single antimicrobials (MP1 or rifampicin) could eradicate Xen31 from the wounds. By contrary, the MP1-rifampicin combination was efficient not only to eradicate but also to prevent the recurrence of Xen31 infection. Furthermore, compared to fucidin cream, which is commonly used in skin infection treatments, MP1-rifampicin combination was superior in terms of preventing resistance development. Our results show that combining MP1, and probably other thiopeptides, with antibiotics can be a promising strategy to treat SSTIs caused by MRSA and likely many other Gram-positive bacteria.


Assuntos
Antibacterianos/administração & dosagem , Bacteriocinas/administração & dosagem , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Rifampina/administração & dosagem , Infecções Cutâneas Estafilocócicas/tratamento farmacológico , Administração Cutânea , Animais , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Sinergismo Farmacológico , Quimioterapia Combinada , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Testes de Sensibilidade Microbiana , Recidiva , Infecções Cutâneas Estafilocócicas/microbiologia , Staphylococcus/metabolismo , Resultado do Tratamento
4.
Antimicrob Agents Chemother ; 64(12)2020 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-32958719

RESUMO

The emergence of antibiotic-resistant pathogens has caused a serious worldwide problem in infection treatment in recent years. One of the pathogens is methicillin-resistant Staphylococcus aureus (MRSA), which is a major cause of skin and soft tissue infections. Alternative strategies and novel sources of antimicrobials to solve antibiotic resistance problems are urgently needed. In this study, we explored the potential of two broad-spectrum bacteriocins, garvicin KS and micrococcin P1, in skin infection treatments. The two bacteriocins acted synergistically with each other and with penicillin G in killing MRSA in vitro The MICs of the antimicrobials in the three-component mixture were 40 ng/ml for micrococcin P1 and 2 µg/ml for garvicin KS and penicillin G, which were 62, 16, and at least 1,250 times lower than their MICs when assessed individually. To assess its therapeutic potential further, we challenged the three-component formulation in a murine skin infection model with the multidrug-resistant luciferase-tagged MRSA Xen31, a strain derived from the clinical isolate S. aureus ATCC 33591. Using the tagged-luciferase activity as a reporter for the presence of Xen31 in wounds, we demonstrated that the three-component formulation was efficient in eradicating the pathogen from treated wounds. Furthermore, compared to Fucidin cream, which is an antibiotic commonly used in skin infection treatments, our formulation was also superior in terms of preventing resistance development.


Assuntos
Bacteriocinas , Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Bacteriocinas/farmacologia , Modelos Animais de Doenças , Camundongos , Infecções Estafilocócicas/tratamento farmacológico , Staphylococcus aureus
5.
Front Microbiol ; 10: 389, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30891018

RESUMO

The leaderless bacteriocin Garvicin KS (GarKS) is a potent antimicrobial, being active against a wide range of important pathogens. GarKS production by the native producer Lactococcus garvieae KS1546 is, however, relatively low (80 BU/ml) under standard laboratory growth conditions (batch culture in GM17 at 30°C). To improve the production, we systematically evaluated the impact of different media and media components on bacteriocin production. Based on the outcomes, a new medium formulation was made that increased GarKS production about 60-fold compared to that achieved in GM17. The new medium was composed of pasteurized milk and tryptone (PM-T). GarKS production was increased further 4-fold (i.e., to 20,000 BU/ml) by increasing the gene dose of the bacteriocin gene cluster (gak) in the native producer. Finally, a combination of the newly composed medium (PM-T), an increased gene dose and cultivation at a constant pH 6 and a 50-60% dissolved oxygen level in growth medium, gave rise to a GarKS production of 164,000 BU/ml. This high production, which is about 2000-fold higher compared to that initially achieved in GM17, corresponds to a GarKS production of 1.2 g/L. To our knowledge, this is one of the highest bacteriocin production reported hitherto.

6.
Physiol Plant ; 162(2): 219-238, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29080293

RESUMO

Plant research and breeding has a long and successful history in the Scandinavian countries, Denmark, Finland, Norway and Sweden. Researchers in the region have been early in adopting plant gene technologies as they developed. This review gives a background, as well as discuss the current and future progress of plant gene technology in these four countries. Country-specific details of the regulation of genetically modified plants are described, as well as similarities and differences in the approach to regulation of novel genome-editing techniques. Also, the development of a sustainable bioeconomy may encompass the application of plant gene technology and we discuss whether or not this is reflected in current associated national strategies. In addition, country-specific information about the opinion of the public and other stakeholders on plant gene technology is presented, together with a country-wise political comparison and a discussion of the potential reciprocal influence between public opinion and the political process of policy development. The Scandinavian region is unique in several aspects, such as climate and certain agriculturally related regulations, and at the same time the region is vulnerable to changes in plant breeding investments due to the relatively small market sizes. It is therefore important to discuss the role and regulation of innovative solutions in Scandinavian plant research and breeding.


Assuntos
Edição de Genes/métodos , Genes de Plantas/genética , Melhoramento Vegetal/métodos , Plantas/genética , Agricultura/legislação & jurisprudência , Agricultura/métodos , Agricultura/tendências , Edição de Genes/legislação & jurisprudência , Edição de Genes/tendências , Plantas/classificação , Plantas Geneticamente Modificadas , Pesquisa/legislação & jurisprudência , Pesquisa/tendências , Países Escandinavos e Nórdicos
7.
Methods Mol Biol ; 1224: 347-56, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25416270

RESUMO

Genetic engineering is an important tool for introducing desired genes into poinsettia (Euphorbia pulcherrima Willd. ex Klotzsch). We describe in this chapter an Agrobacterium tumefaciens-mediated transformation protocol for poinsettia. A detailed description of genetic transformation, antibiotic selection, subsequent regeneration via somatic embryogenesis, and rooting as well as molecular and morphological analyses is included. The methodology described here could facilitate the future engineering of poinsettia for research purpose as well as commercial production of poinsettia plants with improved resistance or novel traits.


Assuntos
Euphorbia/crescimento & desenvolvimento , Euphorbia/genética , Engenharia Genética/métodos , Agrobacterium tumefaciens/genética , Agrobacterium tumefaciens/crescimento & desenvolvimento , Técnicas de Cocultura , Eletroporação , Ambiente Controlado , Euphorbia/fisiologia , Regeneração , Transformação Genética
8.
Plant Physiol ; 166(2): 632-43, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25034019

RESUMO

The stem cell niche of the Arabidopsis (Arabidopsis thaliana) primary root apical meristem is composed of the quiescent (or organizing) center surrounded by stem (initial) cells for the different tissues. Initial cells generate a population of transit-amplifying cells that undergo a limited number of cell divisions before elongating and differentiating. It is unclear whether these divisions occur stochastically or in an orderly manner. Using the thymidine analog 5-ethynyl-2'-deoxyuridine to monitor DNA replication of cells of Arabidopsis root meristems, we identified a pattern of two, four, and eight neighboring cells with synchronized replication along the cortical, epidermal, and endodermal cell files, suggested to be daughters, granddaughters, and great-granddaughters of the direct progeny of each stem cell. Markers of mitosis and cytokinesis were not present in the region closest to the transition zone where the cells start to elongate, suggesting that great-granddaughter cells switch synchronously from the mitotic cell cycle to endoreduplication. Mutations in the stem cell niche-expressed ASH1-RELATED3 (ASHR3) gene, encoding a SET-domain protein conferring histone H3 lysine-36 methylation, disrupted this pattern of coordinated DNA replication and cell division and increased the cell division rate in the quiescent center. E2Fa/E2Fb transcription factors controlling the G1-to-S-phase transition regulate ASHR3 expression and bind to the ASHR3 promoter, substantiating a role for ASHR3 in cell division control. The reduced length of the root apical meristem and primary root of the mutant ashr3-1 indicate that synchronization of replication and cell divisions is required for normal root growth and development.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/fisiologia , Divisão Celular/fisiologia , Meristema/citologia , Raízes de Plantas/citologia , Arabidopsis/citologia , Proteínas de Arabidopsis/genética , Replicação do DNA , DNA de Plantas/biossíntese , Mutação , Fase S
9.
Biochemistry ; 53(13): 2091-100, 2014 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-24625295

RESUMO

In eukaryotes, different chromatin states facilitate or repress gene expression and restrict the activity of transposable elements. Post-translational modifications (PTMs) of amino acid residues on the N-terminal tails of histones are suggested to define such states. The histone lysine methyltransferase (HKMTase) SU(VAR)3-9 RELATED4 (SUVR4) of Arabidopsis thaliana functions as a repressor of transposon activity. Binding of ubiquitin by the WIYLD domain facilitates the addition of two methyl groups to monomethylated lysine 9 of histone H3. By using nuclear magnetic resonance (NMR) spectroscopy, we identified SUVR4 WIYLD (S4WIYLD) as a domain with a four-helix bundle structure, in contrast to three-helix bundles of other ubiquitin binding domains. NMR titration analyses showed that residues of helix α1 (Q38, L39, and D40) and helix α4 (N68, T70, A71, V73, D74, I76, S78, and E82) of S4WIYLD and residues between the first and second ß-strands (T9 and G10) and on ß-strands 3 (R42, G47, K48, and Q49) and 4 (H68, R72, and L73) undergo significant chemical shift changes when the two proteins interact. A model of the complex, generated using HADDOCK, suggests that the N-terminal and C-terminal parts of S4WIYLD constitute a surface that interacts with charged residues close to the hydrophobic patch of ubiquitin. The WIYLD domains of the closely related SUVR1 and SUVR2 Arabidopsis proteins also bind ubiquitin, indicating that this is a general feature of this domain. The question of whether SUVR proteins act as both readers of monoubiquitinated H2B and writers of histone PTMs is discussed.


Assuntos
Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Histona-Lisina N-Metiltransferase/química , Histona-Lisina N-Metiltransferase/metabolismo , Ubiquitina/metabolismo , Sequência de Aminoácidos , Ensaio de Imunoadsorção Enzimática , Histonas/química , Histonas/metabolismo , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Ligação Proteica , Estrutura Secundária de Proteína , Alinhamento de Sequência , Ubiquitina/química
10.
Biochim Biophys Acta ; 1809(8): 407-20, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21664308

RESUMO

Post-translational methylation of lysine residues on histone tails is an epigenetic modification crucial for regulation of chromatin structure and gene expression in eukaryotes. The majority of the histone lysine methyltransferases (HKMTases) conferring such modifications are proteins with a conserved SET domain responsible for the enzymatic activity. The SET domain proteins in the model plant Arabidopsis thaliana can be assigned to evolutionarily conserved classes with different specificities allowing for different outcomes on chromatin structure. Here we review the present knowledge of the biochemical and biological functions of plant SET domain proteins in developmental processes. This article is part of a Special Issue entitled: Epigenetic control of cellular and developmental processes in plants.


Assuntos
Histona-Lisina N-Metiltransferase/metabolismo , Desenvolvimento Vegetal , Proteínas de Plantas/metabolismo , Plantas/metabolismo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Epigênese Genética , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Heterocromatina/genética , Heterocromatina/metabolismo , Histona-Lisina N-Metiltransferase/química , Histona-Lisina N-Metiltransferase/genética , Histonas/química , Histonas/genética , Histonas/metabolismo , Metilação , Modelos Biológicos , Proteínas de Plantas/química , Proteínas de Plantas/genética , Plantas/genética , Proteínas do Grupo Polycomb , Processamento de Proteína Pós-Traducional , Estrutura Terciária de Proteína , Proteínas Repressoras/química , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo
11.
EMBO J ; 30(10): 1939-52, 2011 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-21522130

RESUMO

Post-translational modifications of the N-terminal histone tails, including lysine methylation, have key roles in regulation of chromatin and gene expression. A number of protein modules have been identified that recognize differentially modified histone tails and provide their proteins with the capacity to sense such modifications. Here, we identify the CW domain of plant and animal chromatin-related proteins as a novel module that recognizes different methylated states of lysine 4 on histone H3 (H3K4me). The solution structure of the CW domain of the Arabidopsis ASH1 HOMOLOG2 (ASHH2) histone methyltransferase provides insight into how different CW domains can distinguish different methylated histone tails. We provide evidence that ASHH2 is acting on H3K4me-marked genes, allowing for ASHH2-dependent H3K36 tri-methylation, which contributes to sustained expression of tissue-specific and developmentally regulated genes. This suggests that ASHH2 is a combined 'reader' and 'writer' of the histone code. We propose that different CW domains, dependent on their specificity for different H3K4 methylations, are important for epigenetic memory or participate in switching between permissive and repressive chromatin states.


Assuntos
Arabidopsis/química , Histona-Lisina N-Metiltransferase/química , Domínios e Motivos de Interação entre Proteínas , Arabidopsis/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Histona Metiltransferases , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/metabolismo , Metilação , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Ligação Proteica , Mapeamento de Interação de Proteínas , Estrutura Terciária de Proteína , Ressonância de Plasmônio de Superfície
12.
PLoS Genet ; 7(3): e1001325, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21423664

RESUMO

Chromatin structure and gene expression are regulated by posttranslational modifications (PTMs) on the N-terminal tails of histones. Mono-, di-, or trimethylation of lysine residues by histone lysine methyltransferases (HKMTases) can have activating or repressive functions depending on the position and context of the modified lysine. In Arabidopsis, trimethylation of lysine 9 on histone H3 (H3K9me3) is mainly associated with euchromatin and transcribed genes, although low levels of this mark are also detected at transposons and repeat sequences. Besides the evolutionarily conserved SET domain which is responsible for enzyme activity, most HKMTases also contain additional domains which enable them to respond to other PTMs or cellular signals. Here we show that the N-terminal WIYLD domain of the Arabidopsis SUVR4 HKMTase binds ubiquitin and that the SUVR4 product specificity shifts from di- to trimethylation in the presence of free ubiquitin, enabling conversion of H3K9me1 to H3K9me3 in vitro. Chromatin immunoprecipitation and immunocytological analysis showed that SUVR4 in vivo specifically converts H3K9me1 to H3K9me3 at transposons and pseudogenes and has a locus-specific repressive effect on the expression of such elements. Bisulfite sequencing indicates that this repression involves both DNA methylation-dependent and -independent mechanisms. Transcribed genes with high endogenous levels of H3K4me3, H3K9me3, and H2Bub1, but low H3K9me1, are generally unaffected by SUVR4 activity. Our results imply that SUVR4 is involved in the epigenetic defense mechanism by trimethylating H3K9 to suppress potentially harmful transposon activity.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Cromatina/metabolismo , Elementos de DNA Transponíveis/genética , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/metabolismo , Proteínas Recombinantes/metabolismo , Ubiquitina/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Endopeptidases/metabolismo , Regulação da Expressão Gênica de Plantas , Histona-Lisina N-Metiltransferase/genética , Metilação , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes/genética , Especificidade por Substrato , Transcrição Gênica , Técnicas do Sistema de Duplo-Híbrido , Proteases Específicas de Ubiquitina , Ubiquitinação
13.
PLoS One ; 4(11): e7817, 2009 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-19915673

RESUMO

BACKGROUND: SET-domain proteins are histone lysine (K) methyltransferases (HMTase) implicated in defining transcriptionally permissive or repressive chromatin. The Arabidopsis ASH1 HOMOLOG 2 (ASHH2) protein (also called SDG8, EFS and CCR1) has been suggested to methylate H3K4 and/or H3K36 and is similar to Drosophila ASH1, a positive maintainer of gene expression, and yeast Set2, a H3K36 HMTase. Mutation of the ASHH2 gene has pleiotropic developmental effects. Here we focus on the role of ASHH2 in plant reproduction. METHODOLOGY/PRINCIPAL FINDINGS: A slightly reduced transmission of the ashh2 allele in reciprocal crosses implied involvement in gametogenesis or gamete function. However, the main requirement of ASHH2 is sporophytic. On the female side, close to 80% of mature ovules lack embryo sac. On the male side, anthers frequently develop without pollen sacs or with specific defects in the tapetum layer, resulting in reduction in the number of functional pollen per anther by up to approximately 90%. In consistence with the phenotypic findings, an ASHH2 promoter-reporter gene was expressed at the site of megaspore mother cell formation as well as tapetum layers and pollen. ashh2 mutations also result in homeotic changes in floral organ identity. Transcriptional profiling identified more than 300 up-regulated and 600 down-regulated genes in ashh2 mutant inflorescences, whereof the latter included genes involved in determination of floral organ identity, embryo sac and anther/pollen development. This was confirmed by real-time PCR. In the chromatin of such genes (AP1, AtDMC1 and MYB99) we observed a reduction of H3K36 trimethylation (me3), but not H3K4me3 or H3K36me2. CONCLUSIONS/SIGNIFICANCE: The severe distortion of reproductive organ development in ashh2 mutants, argues that ASHH2 is required for the correct expression of genes essential to reproductive development. The reduction in the ashh2 mutant of H3K36me3 on down-regulated genes relevant to the observed defects, implicates ASHH2 in regulation of gene expression via H3K36 trimethylation in chromatin of Arabidopsis inflorescences.


Assuntos
Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Histona-Lisina N-Metiltransferase/genética , Proteínas de Plantas/metabolismo , Alelos , Cromatina/química , Cruzamentos Genéticos , Regulação para Baixo , Perfilação da Expressão Gênica , Histona Metiltransferases , Histona-Lisina N-Metiltransferase/química , Histona-Lisina N-Metiltransferase/fisiologia , Mutação , Análise de Sequência com Séries de Oligonucleotídeos , Óvulo Vegetal/genética , Fenótipo , Pólen , Transcrição Gênica
14.
Plant Mol Biol ; 66(1-2): 47-59, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17978851

RESUMO

The Arabidopsis thaliana genome contains more than 30 genes encoding SET-domain proteins that are thought to be epigenetic regulators of gene expression and chromatin structure. SET-domain proteins can be divided into subgroups, and members of the Polycomb group (PcG) and trithorax group (trxG) have been shown to be important regulators of development. Both in animals and plants some of these proteins are components of multimeric protein complexes. Here, we have analyzed the Arabidopsis trxG protein ASHR3 which has a SET domain and pre- and post-SET domains similar to that of Ash1 in Drosophila. In addition to the SET domain, a divergent PHD finger is found in the N-terminus of the ASHR3 protein. As expected from SET-domain proteins involved in transcriptional activation, ASHR3 (coupled to GFP) localizes to euchromatin. A yeast two-hybrid screening revealed that the ASHR3 protein interacts with the putative basic helix-loop-helix (bHLH) transcription factor ABORTED MICROSPORES (AMS), which is involved in anther and stamen development in Arabidopsis. Deletion mapping indicated that both the PHD finger and the SET domain mediate the interaction between the two proteins. Overexpression of ASHR3 led in general to growth arrest, and specifically to degenerated anthers and male sterility. Expression analyses demonstrated that ASHR3 like AMS is expressed in the anther and in stamen filaments. We therefore propose that AMS can target ASHR3 to chromatin and regulate genes involved in stamen development and function.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/crescimento & desenvolvimento , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Sequência de Aminoácidos , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Sequência de Bases , Primers do DNA , Células HeLa , Humanos , Dados de Sequência Molecular , Ligação Proteica , Homologia de Sequência de Aminoácidos , Técnicas do Sistema de Duplo-Híbrido
15.
BMC Biotechnol ; 7: 91, 2007 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-18088429

RESUMO

BACKGROUND: Due to the increased use of genetic modifications in crop improvement, there is a need to develop effective methods for the detection of both known and unknown transgene constructs in plants. We have developed a strategy for detection and characterization of unknown genetic modifications and we present a proof of concept for this method using Arabidopsis thaliana and Oryza sativa (rice). The approach relies on direct hybridization of total genomic DNA to high density microarrays designed to have probes tiled throughout a set of reference sequences. RESULTS: We show that by using arrays with 25 basepair probes covering both strands of a set of 235 vectors (2 million basepairs) we can detect transgene sequences in transformed lines of A. thaliana and rice without prior knowledge about the transformation vectors or the T-DNA constructs used to generate the studied plants. CONCLUSION: The approach should allow the user to detect the presence of transgene sequences and get sufficient information for further characterization of unknown genetic constructs in plants. The only requirements are access to a small amount of pure transgene plant material, that the genetic construct in question is above a certain size (here >/= 140 basepairs) and that parts of the construct shows some degree of sequence similarity with published genetic elements.


Assuntos
Arabidopsis/genética , Análise Mutacional de DNA/métodos , Sondas de DNA/genética , DNA de Plantas/genética , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Oryza/genética , Análise de Sequência de DNA/métodos , Sequência de Bases , Mapeamento Cromossômico/métodos , Dados de Sequência Molecular
16.
J Agric Food Chem ; 54(26): 9658-63, 2006 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-17177484

RESUMO

We have tested and compared the performance of 12 different assays representing four different real-time polymerase chain reaction (PCR) chemistries in the context of genetically modified organism detection. Several different molecular beacon, SYBR Green, TaqMan, and MGB assays were designed for the event specific detection and quantification of the 3' integration junction of GTS 40-3-2 (Roundup Ready) soybean. Sensitivity as well as robustness in the presence of background DNA were tested. None of the PCR-based approaches appeared to be significantly better than any of the other, but the molecular beacon assays had the lowest efficiency and also seemed more sensitive to changes in experimental setup.


Assuntos
DNA de Plantas/análise , Glycine max/genética , Plantas Geneticamente Modificadas/genética , Reação em Cadeia da Polimerase/métodos , Corantes Fluorescentes , Plantas Geneticamente Modificadas/classificação , Sensibilidade e Especificidade
17.
Nucleic Acids Res ; 34(19): 5461-70, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-17020925

RESUMO

Proteins containing the evolutionarily conserved SET domain are involved in regulation of eukaryotic gene expression and chromatin structure through their histone lysine methyltransferase (HMTase) activity. The Drosophila SU(VAR)3-9 protein and related proteins of other organisms have been associated with gene repression and heterochromatinization. In Arabidopsis there are 10 SUVH and 5 SUVR genes encoding proteins similar to SU(VAR)3-9, and 4 SUVH proteins have been shown to control heterochromatic silencing by its HMTase activity and by directing DNA methylation. The SUVR proteins differ from the SUVH proteins in their domain structure, and we show that the closely related SUVR1, SUVR2 and SUVR4 proteins contain a novel domain at their N-terminus, and a SUVR specific region preceding the SET domain. Green fluorescent protein (GFP)-fusions of these SUVR proteins preferably localize to the nucleolus, suggesting involvement in regulation of rRNA expression, in contrast to other SET-domain proteins studied so far. A novel HMTase specificity was demonstrated for SUVR4, in that monomethylated histone H3K9 is its preferred substrate in vitro.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Nucléolo Celular/enzimologia , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/metabolismo , Processamento Alternativo , Sequência de Aminoácidos , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Histona Metiltransferases , Histona-Lisina N-Metiltransferase/química , Histona-Lisina N-Metiltransferase/genética , Histonas/química , Lisina/metabolismo , Metilação , Dados de Sequência Molecular , Proteínas Metiltransferases , Sinais Direcionadores de Proteínas , Estrutura Terciária de Proteína , Alinhamento de Sequência , Especificidade por Substrato
18.
J Comp Physiol B ; 176(4): 359-69, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16362306

RESUMO

Hypoxia inducible factor 1 alpha (HIF-1alpha) initiates expression of a wide variety of genes, some of which are involved in apoptosis and cell cycle arrest. We have previously shown that crucian carp increases its respiratory surface area 7.5-fold in response to hypoxia. This change is due to apoptosis and cell cycle arrest in specific parts of its gills. Here we have characterized crucian carp HIF-1alpha, and measured mRNA, protein and DNA binding levels during hypoxia exposure in crucian carp gills. We have also measured an HIF-1alpha-induced gene, the inducible nitric oxide synthase (iNOS), which has the ability to initiate apoptosis and cell cycle arrest. Crucian carp HIF-1alpha was found to have all critical domains known to be important for function. Comparison of the peptide sequence with other species indicated high similarity with other cyprinid fish, but a pronounced variation compared to the salmonid, rainbow trout. Further, we found HIF-1alpha protein to be stabilized during hypoxia. Further, HIF-1alpha was often present in normoxia, and showed marked individual weight-dependent variation. We found no alteration of iNOS mRNA levels during hypoxia exposure. These findings suggest HIF-1alpha involvement in hypoxia-induced change of respiratory surface area in crucian carp gills. However, its activity does not seem to be mediated through iNOS.


Assuntos
Carpas/genética , Brânquias/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Óxido Nítrico Sintase Tipo II/metabolismo , RNA Mensageiro/metabolismo , Sequência de Aminoácidos , Animais , Carpas/metabolismo , Hipóxia Celular , Regulação da Expressão Gênica , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Dados de Sequência Molecular , Homologia de Sequência de Aminoácidos
19.
Nucleic Acids Res ; 31(18): 5291-304, 2003 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-12954765

RESUMO

Animal proteins that contain a methyl-CpG-binding domain (MBD) are suggested to provide a link between DNA methylation, chromatin remodelling and gene silencing. However, some MBD proteins reside in chromatin remodelling complexes, but do not have specific affinity for methylated DNA. It has recently been shown that the Arabidopsis genome contains 12 putative genes encoding proteins with domains similar to MBD, of which at least three bind symmetrically methylated DNA. Using a bioinformatics approach, we have identified additional domains in a number of these proteins and, on this basis and extended sequence similarity, divided the proteins into subgroups. Using RT-PCR we show that 10 of the AtMBD genes are active and differentially expressed in diverse tissues. To investigate the biological significance of AtMBD proteins, we have transformed Arabidopsis with a construct aimed at RNA interference with expression of the AtMBD11 gene, normally active in most tissues. The resulting 35S::AtMBD11-RNAi plants displayed a variety of phenotypic effects, including aerial rosettes, serrated leaves, abnormal position of flowers, fertility problems and late flowering. Arabidopsis lines with reduced expression of genes involved in chromatin remodelling and transgene silencing show similar phenotypes. Our results suggest an important role for AtMBD proteins in plant development.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Ilhas de CpG/genética , Proteínas de Ligação a DNA/genética , Processamento Alternativo , Sequência de Aminoácidos , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/metabolismo , Sítios de Ligação/genética , Northern Blotting , Núcleo Celular/metabolismo , Metilação de DNA , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Proteínas de Fluorescência Verde , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Dados de Sequência Molecular , Família Multigênica/genética , Fenótipo , Plantas Geneticamente Modificadas , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Interferência de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Transcrição Gênica
20.
Plant Mol Biol ; 53(3): 313-26, 2003 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-14750521

RESUMO

The peroxiredoxin antioxidant gene AtPER1 has been considered to be specifically expressed in the embryo and aleurone layer during maturation and desiccation stages of development, and in the mature seed, typically for late embryogenesis-abundant (lea) transcripts. In the abscisic acid-insensitive abi3-1 mutant, the AtPER1 transcript level is strongly reduced, suggesting ABI3 to be a prime regulator of AtPER1. We have studied the expression pattern and regulation of AtPER1 with a series of nine promoter::GUS constructs with deletions and/or mutations in putative regulatory elements. Arabidopsis lines harbouring these constructs revealed AtPER1 promoter activity in the endosperm, especially the chalazal cyst, already when the embryo is in the late globular stage, in the embryo from the late torpedo stage, and in distinct cells of unfertilized and fertilized ovules. Early expression seems to be dependent on a putative antioxidant-responsive promoter element (ARE), while from the bent cotyledon stage endosperm and embryo expression is dependent on an ABA-responsive element (ABRE) likely to bind ABI5. The shortest promoter fragment (113 bp), devoid of ARE, ABRE and without an intact RY/Sph element thought to bind ABI3 did not drive GUS expression. The AtPER1::GUS construct also revealed expression in cotyledons, meristems and stem branching points. In general, seed and vegetative expression coincided with the expression pattern of ABI3. In plants ectopically expressing ABI3, AtPER1::GUS expression was found in true leaves, and AtPER1 could be induced by exogenous ABA and oxidative stress (H2O2 and hydroquinone). ABI3-mediated oxidative stress induction was dependent on the presence of an intact ARE element.


Assuntos
Proteínas de Arabidopsis/metabolismo , Estresse Oxidativo/fisiologia , Peroxidases/metabolismo , Ácido Abscísico/farmacologia , Sequência de Aminoácidos , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Glucuronidase/genética , Glucuronidase/metabolismo , Peróxido de Hidrogênio/farmacologia , Hidroquinonas/farmacologia , Dados de Sequência Molecular , Peroxidases/genética , Peroxirredoxinas , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Reprodução/genética , Elementos de Resposta/genética , Sementes/genética , Sementes/crescimento & desenvolvimento , Homologia de Sequência de Aminoácidos , Fatores de Transcrição
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA