Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Brain Behav Immun ; 123: 81-98, 2024 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-39243989

RESUMO

Multiple Sclerosis (MS) is a chronic degenerative disease of the central nervous system (CNS) characterized by inflammation, demyelination, and progressive neurodegeneration. These processes, combined with the failure of reparative remyelination initiated by oligodendrocyte precursor cells (OPCs), lead to irreversible neurological impairment. The cytokine tumor necrosis factor (TNF) has been implicated in CNS repair via activation of its cognate receptor TNFR2 in glia. Here, we demonstrate the important role of TNFR2 in regulating OPC function in vivo during demyelinating disease, and that TNFR2 expressed in OPCs modulates OPC-microglia interactions. In PdgfrαCreERT:Tnfrsf1bfl/fl:Eyfp mice with selective TNFR2 ablation in OPCs, we observed an earlier onset and disease peak in experimental autoimmune encephalomyelitis (EAE). This was associated with accelerated immune cell infiltration and increased microglia activation in the spinal cord. Similarly, PdgfrαCreERT:Tnfrsf1bfl/fl:Eyfp mice showed rapid and increased microglia reactivity compared to control mice in the corpus callosum after cuprizone-induced demyelination, followed by chronic reduction in the number of mature myelinating oligodendrocytes (OLs). With EAE and cuprizone models combined, we uncovered that TNFR2 does not have a cell autonomous role in OPC differentiation, but may be important for survival of newly formed mature OLs. Finally, using an in vitro approach, we demonstrated that factors released by Tnfrsf1b ablated OPCs drove microglia to develop an exacerbated "foamy" phenotype when incubated with myelin-rich spinal cord homogenate, aberrantly increasing lysosomal lipid accumulation. Together, our data indicate that TNFR2 signaling in OPCs is protective by dampening their immune-inflammatory activation and by suppressing neurotoxic microglia reactivity. This suggests that boosting TNFR2 activation or its downstream cascades could be an effective strategy to restore OPC reparative capacity in neuroimmune and demyelinating disease.

2.
Brain Behav Immun ; 116: 269-285, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38142915

RESUMO

Microglia, the resident immune cells of the central nervous system (CNS), play a major role in damage progression and tissue remodeling after acute CNS injury, including ischemic stroke (IS) and spinal cord injury (SCI). Understanding the molecular mechanisms regulating microglial responses to injury may thus reveal novel therapeutic targets to promote CNS repair. Here, we investigated the role of microglial tumor necrosis factor receptor 2 (TNFR2), a transmembrane receptor previously associated with pro-survival and neuroprotective responses, in shaping the neuroinflammatory environment after CNS injury. By inducing experimental IS and SCI in Cx3cr1CreER:Tnfrsf1bfl/fl mice, selectively lacking TNFR2 in microglia, and corresponding Tnfrsf1bfl/fl littermate controls, we found that ablation of microglial TNFR2 significantly reduces lesion size and pro-inflammatory cytokine levels, and favors infiltration of leukocytes after injury. Interestingly, these effects were paralleled by opposite sex-specific modifications of microglial reactivity, which was found to be limited in female TNFR2-ablated mice compared to controls, whereas it was enhanced in males. In addition, we show that TNFR2 protein levels in the cerebrospinal fluid (CSF) of human subjects affected by IS and SCI, as well as healthy donors, significantly correlate with disease stage and severity, representing a valuable tool to monitor the inflammatory response after acute CNS injury. Hence, these results advance our understanding of the mechanisms regulating microglia reactivity after acute CNS injury, aiding the development of sex- and microglia-specific, personalized neuroregenerative strategies.


Assuntos
Microglia , Traumatismos da Medula Espinal , Animais , Feminino , Humanos , Masculino , Camundongos , Sistema Nervoso Central/metabolismo , Citocinas/metabolismo , Microglia/metabolismo , Receptores Tipo II do Fator de Necrose Tumoral/genética , Receptores Tipo II do Fator de Necrose Tumoral/metabolismo , Traumatismos da Medula Espinal/metabolismo
3.
Front Cell Neurosci ; 17: 1295840, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38155863

RESUMO

In central nervous system (CNS) injury and disease, peripherally derived myeloid cells infiltrate the CNS parenchyma and interact with resident cells, propagating the neuroinflammatory response. Because peripheral myeloid populations differ profoundly depending on the type and phase of injury, their crosstalk with CNS resident cells, particularly microglia, will lead to different functional outcomes. Thus, understanding how peripheral myeloid cells affect the phenotype and function of microglia in different disease conditions and phases may lead to a better understanding of disease-specific targetable pathways for neuroprotection and neurorepair. To this end, we set out to develop an in vitro system to investigate the communication between peripheral myeloid cells and microglia, with the goal of uncovering potential differences due to disease type and timing. We isolated peripheral myeloid cells from mice undergoing experimental autoimmune encephalomyelitis (EAE), a model of multiple sclerosis, or acute cerebral ischemia by permanent middle cerebral artery occlusion (pMCAO) at different times after disease and probed their ability to change the phenotype of primary microglia isolated from the brain of adult mice. We identified changes not only dependent on the disease model, but also on the timepoint after disease onset from which the myeloid cells were isolated. Peripheral myeloid cells from acute EAE induced morphological changes in microglia, followed by increases in expression of genes involved in inflammatory signaling. Conversely, it was the peripheral myeloid cells from the chronic phase of pMCAO that induced gene expression changes in genes involved in inflammatory signaling and phagocytosis, which was not followed by a change in morphology. This underscores the importance of understanding the role of infiltrating myeloid cells in different disease contexts and phases. Furthermore, we showed that our assay is a valuable tool for investigating myeloid cell interactions in a range of CNS neuroinflammatory conditions.

4.
J Neuroimmunol ; 385: 578246, 2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-37988839

RESUMO

Ischemic stroke often leaves survivors with permanent disabilities and therapies aimed at limiting detrimental inflammation and improving functional outcome are still needed. Tumor necrosis factor (TNF) levels increase rapidly after ischemic stroke, and while signaling through TNF receptor 1 (TNFR1) is primarily detrimental, TNFR2 signaling mainly has protective functions. We therefore investigated how systemic stimulation of TNFR2 with the TNFR2 agonist NewSTAR2 affects ischemic stroke in mice. We found that NewSTAR2 treatment induced changes in peripheral immune cell numbers and transiently affected microglial numbers and neuroinflammation. However, this was not sufficient to improve long-term functional outcome after stroke in mice.


Assuntos
AVC Isquêmico , Receptores Tipo II do Fator de Necrose Tumoral , Animais , Camundongos , Inflamação/patologia , Camundongos Endogâmicos C57BL , Receptores Tipo I de Fatores de Necrose Tumoral , Fator de Necrose Tumoral alfa/metabolismo
5.
Cells ; 9(11)2020 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-33153044

RESUMO

Spinal cord injury (SCI) is a devastating condition consisting of an instant primary mechanical injury followed by a secondary injury that progresses for weeks to months. The cytokine tumor necrosis factor (TNF) plays an important role in the pathophysiology of SCI. We investigated the effect of myeloid TNF ablation (peripheral myeloid cells (macrophages and neutrophils) and microglia) versus central myeloid TNF ablation (microglia) in a SCI contusion model. We show that TNF ablation in macrophages and neutrophils leads to reduced lesion volume and improved functional outcome after SCI. In contrast, TNF ablation in microglia only or TNF deficiency in all cells had no effect. TNF levels tended to be decreased 3 h post-SCI in mice with peripheral myeloid TNF ablation and was significantly decreased 3 days after SCI. Leukocyte and microglia populations and all other cytokines (IL-1ß, IL-2, IL-4, IL-5, IL-6, IL-10, IL-12, and IFNγ) and chemokines (CCL2, CCL5, and CXCL1) investigated, in addition to TNFR1 and TNFR2, were comparable between genotypes. Analysis of post-SCI signaling cascades demonstrated that the MAPK kinase SAPK/JNK decreased and neuronal Bcl-XL levels increased post-SCI in mice with ablation of TNF in peripheral myeloid cells. These findings demonstrate that peripheral myeloid cell-derived TNF is pathogenic in SCI.


Assuntos
Deleção de Genes , Células Mieloides/metabolismo , Traumatismos da Medula Espinal/patologia , Traumatismos da Medula Espinal/fisiopatologia , Fator de Necrose Tumoral alfa/metabolismo , Animais , Receptor 1 de Quimiocina CX3C/metabolismo , Inflamação/patologia , Sistema de Sinalização das MAP Quinases , Macrófagos/metabolismo , Camundongos , Microglia/metabolismo , Microglia/patologia , Atividade Motora , Neutrófilos/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Recuperação de Função Fisiológica , Fatores de Transcrição STAT/metabolismo , Medula Espinal/patologia , Proteína bcl-X/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA