Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Med (Lausanne) ; 11: 1377186, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38799150

RESUMO

The intricate interplay between the gut microbiota and ocular health has surpassed conventional medical beliefs, fundamentally reshaping our understanding of organ interconnectivity. This review investigates into the intricate relationship between gut microbiota-derived metabolites and their consequential impact on ocular health and disease pathogenesis. By examining the role of specific metabolites, such as short-chain fatty acids (SCFAs) like butyrate and bile acids (BAs), herein we elucidate their significant contributions to ocular pathologies, thought-provoking the traditional belief of organ sterility, particularly in the field of ophthalmology. Highlighting the dynamic nature of the gut microbiota and its profound influence on ocular health, this review underlines the necessity of comprehending the complex workings of the gut-eye axis, an emerging field of science ready for further exploration and scrutiny. While acknowledging the therapeutic promise in manipulating the gut microbiome and its metabolites, the available literature advocates for a targeted, precise approach. Instead of broad interventions, it emphasizes the potential of exploiting specific microbiome-related metabolites as a focused strategy. This targeted approach compared to a precision tool rather than a broad-spectrum solution, aims to explore the therapeutic applications of microbiome-related metabolites in the context of various retinal diseases. By proposing a nuanced strategy targeted at specific microbial metabolites, this review suggests that addressing specific deficiencies or imbalances through microbiome-related metabolites might yield expedited and pronounced outcomes in systemic health, extending to the eye. This focused strategy holds the potential in bypassing the irregularity associated with manipulating microbes themselves, paving a more efficient pathway toward desired outcomes in optimizing gut health and its implications for retinal diseases.

2.
Antioxidants (Basel) ; 12(5)2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37237862

RESUMO

Atherogenesis involves multiple cell types undergoing robust metabolic processes resulting in mitochondrial dysfunction, elevated reactive oxygen species (ROS), and consequent oxidative stress. Carbon monoxide (CO) has been recently explored for its anti-atherogenic potency; however, the effects of CO on ROS generation and mitochondrial dysfunction in atherosclerosis remain unexplored. Herein, we describe the anti-atherogenic efficacy of CORM-A1, a CO donor, in in vitro (ox-LDL-treated HUVEC and MDMs) and in vivo (atherogenic diet-fed SD rats) experimental models. In agreement with previous data, we observed elevated miR-34a-5p levels in all our atherogenic model systems. Administration of CO via CORM-A1 accounted for positive alterations in the expression of miR-34a-5p and transcription factors/inhibitors (P53, NF-κB, ZEB1, SNAI1, and STAT3) and DNA methylation pattern, thereby lowering its countenance in atherogenic milieu. Inhibition of miR-34a-5p expression resulted in restoration of SIRT-1 levels and of mitochondrial biogenesis. CORM-A1 supplementation further accounted for improvement in cellular and mitochondrial antioxidant capacity and subsequent reduction in ROS. Further and most importantly, CORM-A1 restored cellular energetics by improving overall cellular respiration in HUVECs, as evidenced by restored OCR and ECAR rates, whereas a shift from non-mitochondrial to mitochondrial respiration was observed in atherogenic MDMs, evidenced by unaltered glycolytic respiration and maximizing OCR. In agreement with these results, CORM-A1 treatment also accounted for elevated ATP production in both in vivo and in vitro experimental models. Cumulatively, our studies demonstrate for the first time the mechanism of CORM-A1-mediated amelioration of pro-atherogenic manifestations through inhibition of miR-34a-5p expression in the atherogenic milieu and consequential rescue of SIRT1-mediated mitochondrial biogenesis and respiration.

3.
Front Med (Lausanne) ; 9: 966392, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35847780
4.
Exp Eye Res ; 221: 109129, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35649469

RESUMO

Preservation of retinal barrier function is critical to maintenance of retinal health. Therefore, it is not surprising that loss of barrier integrity is a pathologic feature common to degenerative retinal diseases such as diabetic retinopathy. Our prior studies demonstrate the importance of hydroxycarboxylic acid receptor 2/GPR109A (HCAR2/GPR109A) expression in the retinal pigment epithelium (RPE) to outer retinal barrier integrity. However, whether HCAR2/GPR109A is expressed in retinal endothelial cells and has a similar relationship to inner blood retinal barrier regulation is not known. In the current study, we examined relevance of receptor expression to endothelial cell dependent-blood retinal barrier integrity. siRNA technology was used to modulate HCAR2/GPR109A expression in human retinal endothelial cells (HRECs). Cells were cultured in the presence or absence of VEGF, a pro-inflammatory stimulus, and/or various concentrations of the HCAR2/GPR109A-specific agonist beta-hydyroxybutyrate (BHB). HCAR2/GPR109A expression was monitored by qPCR and electrical cell impedance sensing (ECIS) was used to evaluate barrier function. Complementary in vivo studies were conducted in wildtype and HCAR2/GPR109A knockout mice treated intraperitoneally with lipopolysaccharide and/or BHB. Vascular leakage was monitored using fluorescein angiography and Western blot analyses of albumin extravasation. Additionally, retinal function was evaluated by OptoMotry. Decreased (siRNA knockdown) or absent (gene knockout) HCAR2/GPR109A expression was associated with impaired barrier function both in vitro and in vivo. BHB treatment provided some protection, limiting disruptions in retinal barrier integrity and function; an effect that was found to be receptor (HCAR2/GPR109A)-dependent. Collectively, the present studies support a key role for HCAR2/GPR109A in regulating blood-retinal barrier integrity and highlight the therapeutic potential of the receptor toward preventing and treating retinal diseases such as diabetic retinopathy in which compromised barrier function is paramount.


Assuntos
Retinopatia Diabética , Receptores Acoplados a Proteínas G , Doenças Retinianas , Animais , Barreira Hematorretiniana/metabolismo , Proteínas de Transporte/metabolismo , Retinopatia Diabética/metabolismo , Células Endoteliais/metabolismo , Cetonas/metabolismo , Cetonas/uso terapêutico , Camundongos , RNA Interferente Pequeno/uso terapêutico , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Doenças Retinianas/metabolismo
5.
Front Immunol ; 12: 607044, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33717088

RESUMO

Suppressive mechanisms operating within T cells are linked to immune dysfunction in the tumor microenvironment. We have previously reported using adoptive T cell immunotherapy models that tumor-bearing mice treated with a regimen of proteasome inhibitor, bortezomib - a dipeptidyl boronate, show increased antitumor lymphocyte effector function and survival. Here, we identify a mechanism for the improved antitumor CD8+ T cell function following bortezomib treatment. Intravenous administration of bortezomib at a low dose (1 mg/kg body weight) in wild-type or tumor-bearing mice altered the expression of a number of miRNAs in CD8+ T cells. Specifically, the effect of bortezomib was prominent on miR-155 - a key cellular miRNA involved in T cell function. Importantly, bortezomib-induced upregulation of miR-155 was associated with the downregulation of its targets, the suppressor of cytokine signaling 1 (SOCS1) and inositol polyphosphate-5-phosphatase (SHIP1). Genetic and biochemical analysis confirmed a functional link between miR-155 and these targets. Moreover, activated CD8+ T cells treated with bortezomib exhibited a significant reduction in programmed cell death-1 (PD-1) expressing SHIP1+ phenotype. These data underscore a mechanism of action by which bortezomib induces miR-155-dependent downregulation of SOCS1 and SHIP1 negative regulatory proteins, leading to a suppressed PD-1-mediated T cell exhaustion. Collectively, data provide novel molecular insights into bortezomib-mediated lymphocyte-stimulatory effects that could overcome immunosuppressive actions of tumor on antitumor T cell functions. The findings support the approach that bortezomib combined with other immunotherapies would lead to improved therapeutic outcomes by overcoming T cell exhaustion in the tumor microenvironment.


Assuntos
Antineoplásicos/farmacologia , Bortezomib/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , MicroRNAs/genética , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases/genética , Inibidores de Proteassoma/farmacologia , Proteína 1 Supressora da Sinalização de Citocina/genética , Animais , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Linhagem Celular Tumoral , Citocinas/metabolismo , Modelos Animais de Doenças , Humanos , Contagem de Linfócitos , Camundongos , MicroRNAs/química , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases/química , Dobramento de RNA , Interferência de RNA , Transdução de Sinais , Proteína 1 Supressora da Sinalização de Citocina/química
6.
Biomolecules ; 11(2)2021 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-33669313

RESUMO

Bile acids (BAs) are amphipathic sterols primarily synthesized from cholesterol in the liver and released in the intestinal lumen upon food intake. BAs play important roles in micellination of dietary lipids, stimulating bile flow, promoting biliary phospholipid secretion, and regulating cholesterol synthesis and elimination. Emerging evidence, however, suggests that, aside from their conventional biological function, BAs are also important signaling molecules and therapeutic tools. In the last decade, the therapeutic applications of BAs in the treatment of ocular diseases have gained great interest. Despite the identification of BA synthesis, metabolism, and recycling in ocular tissues, much remains unknown with regards to their biological significance in the eye. Additionally, as gut microbiota directly affects the quality of circulating BAs, their analysis could derive important information on changes occurring in this microenvironment. This review aims at providing an overview of BA metabolism and biological function with a focus on their potential therapeutic and diagnostic use for retinal diseases.


Assuntos
Ácidos e Sais Biliares/metabolismo , Retina/metabolismo , Doenças Retinianas/metabolismo , Animais , Colestase , Colesterol/metabolismo , Microbioma Gastrointestinal , Humanos , Inflamação , Intestinos , Fígado/metabolismo , Camundongos , Microbiota , Transdução de Sinais
7.
Int J Mol Sci ; 21(15)2020 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-32751103

RESUMO

Retinal ischemia contributes to visual impairment in ischemic retinopathies. A disintegrin and metalloproteinase ADAM17 is implicated in multiple vascular pathologies through its ability to regulate inflammatory signaling via ectodomain shedding. We investigated the role of endothelial ADAM17 in neuronal and vascular degeneration associated with retinal ischemia reperfusion (IR) injury using mice with conditional inactivation of ADAM17 in vascular endothelium. ADAM17Cre-flox and control ADAM17flox mice were subjected to 40 min of pressure-induced retinal ischemia, with the contralateral eye serving as control. Albumin extravasation and retinal leukostasis were evaluated 48 h after reperfusion. Retinal morphometric analysis was conducted 7 days after reperfusion. Degenerate capillaries were assessed by elastase digest and visual function was evaluated by optokinetic test 14 and 7 days following ischemia, respectively. Lack of ADAM17 decreased vascular leakage and reduced retinal thinning and ganglion cell loss in ADAM17Cre-flox mice. Further, ADAM17Cre-flox mice exhibited a remarkable reduction in capillary degeneration following IR. Decrease in neurovascular degeneration in ADAM17Cre-flox mice correlated with decreased activation of caspase-3 and was associated with reduction in oxidative stress and retinal leukostasis. In addition, knockdown of ADAM17 resulted in decreased cleavage of p75NTR, the process known to be associated with retinal cell apoptosis. A decline in visual acuity evidenced by decrease in spatial frequency threshold observed in ADAM17flox mice was partially restored in ADAM17-endothelial deficient mice. The obtained results provide evidence that endothelial ADAM17 is an important contributor to IR-induced neurovascular damage in the retina and suggest that interventions directed at regulating ADAM17 activity can be beneficial for alleviating the consequences of retinal ischemia.


Assuntos
Proteína ADAM17/genética , Leucostasia/genética , Traumatismo por Reperfusão/genética , Degeneração Retiniana/genética , Células Ganglionares da Retina/metabolismo , Proteína ADAM17/deficiência , Albuminas/metabolismo , Animais , Apoptose/genética , Permeabilidade Capilar , Caspase 3/genética , Caspase 3/metabolismo , Adesão Celular , Modelos Animais de Doenças , Endotélio Vascular/metabolismo , Endotélio Vascular/patologia , Regulação da Expressão Gênica , Leucócitos/metabolismo , Leucócitos/patologia , Leucostasia/metabolismo , Leucostasia/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Estresse Oxidativo , Receptores de Fator de Crescimento Neural/genética , Receptores de Fator de Crescimento Neural/metabolismo , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Degeneração Retiniana/metabolismo , Degeneração Retiniana/patologia , Células Ganglionares da Retina/patologia
8.
Antioxidants (Basel) ; 9(7)2020 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-32660051

RESUMO

We investigated the contributing role of the histone deacetylase 6 (HDAC6) to the early stages of diabetic retinopathy (DR). Furthermore, we examined the mechanism of action of HDAC6 in human retinal endothelial cells (HuREC) exposed to glucidic stress. Streptozotocin-induced diabetic rats (STZ-rats), a rat model of type 1 diabetes, were used as model of DR. HDAC6 expression and activity were increased in human diabetic postmortem donors and STZ-rat retinas and were augmented in HuREC exposed to glucidic stress (25 mM glucose). Administration of the HDAC6 specific inhibitor Tubastatin A (TS) (10 mg/kg) prevented retinal microvascular hyperpermeability and up-regulation of inflammatory markers. Furthermore, in STZ-rats, TS decreased the levels of senescence markers and rescued the expression and activity of the histone deacetylase sirtuin 1 (SIRT1), while downregulating the levels of free radicals and of the redox stress markers 4-hydroxynonenal (4-HNE) and nitrotyrosine (NT). The antioxidant effects of TS, consequent to HDAC6 inhibition, were associated with preservation of Nrf2-dependent gene expression and up-regulation of thioredoxin-1 activity. In vitro data, obtained from HuREC, exposed to glucidic stress, largely replicated the in vivo results further confirming the antioxidant effects of HDAC6 inhibition by TS in the diabetic rat retina. In summary, our data implicate HDAC6 activation in mediating hyperglycemia-induced retinal oxidative/nitrative stress leading to retinal microangiopathy and, potentially, DR.

9.
J Clin Med ; 9(6)2020 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-32575487

RESUMO

Retinopathy of prematurity (ROP) is the leading cause of blindness in infants. We have investigated the efficacy of the secondary bile acid ursodeoxycholic acid (UDCA) and its taurine and glycine conjugated derivatives tauroursodeoxycholic acid (TUDCA) and glycoursodeoxycholic acid (GUDCA) in preventing retinal neovascularization (RNV) in an experimental model of ROP. Seven-day-old mice pups (P7) were subjected to oxygen-induced retinopathy (OIR) and were treated with bile acids for various durations. Analysis of retinal vascular growth and distribution revealed that UDCA treatment (50 mg/kg, P7-P17) of OIR mice decreased the extension of neovascular and avascular areas, whereas treatments with TUDCA and GUDCA showed no changes. UDCA also prevented reactive gliosis, preserved ganglion cell survival, and ameliorated OIR-induced blood retinal barrier dysfunction. These effects were associated with decreased levels of oxidative stress markers, inflammatory cytokines, and normalization of the VEGF-STAT3 signaling axis. Furthermore, in vitro tube formation and permeability assays confirmed UDCA inhibitory activity toward VEGF-induced pro-angiogenic and pro-permeability effects on human retinal microvascular endothelial cells. Collectively, our results suggest that UDCA could represent a new effective therapy for ROP.

10.
Oxid Med Cell Longev ; 2020: 2692794, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32454935

RESUMO

Nicotinamide adenine dinucleotide (NAD+) plays an important role in various key biological processes including energy metabolism, DNA repair, and gene expression. Accumulating clinical and experimental evidence highlights an age-dependent decline in NAD+ levels and its association with the development and progression of several age-related diseases. This supports the establishment of NAD+ as a critical regulator of aging and longevity and, relatedly, a promising therapeutic target to counter adverse events associated with the normal process of aging and/or the development and progression of age-related disease. Relative to the above, the metabolism of NAD+ has been the subject of numerous investigations in various cells, tissues, and organ systems; however, interestingly, studies of NAD+ metabolism in the retina and its relevance to the regulation of visual health and function are comparatively few. This is surprising given the critical causative impact of mitochondrial oxidative damage and bioenergetic crises on the development and progression of degenerative disease of the retina. Hence, the role of NAD+ in this tissue, normally and aging and/or disease, should not be ignored. Herein, we discuss important findings in the field of NAD+ metabolism, with particular emphasis on the importance of the NAD+ biosynthesizing enzyme NAMPT, the related metabolism of NAD+ in the retina, and the consequences of NAMPT and NAD+ deficiency or depletion in this tissue in aging and disease. We discuss also the implications of potential therapeutic strategies that augment NAD+ levels on the preservation of retinal health and function in the above conditions. The overarching goal of this review is to emphasize the importance of NAD+ metabolism in normal, aging, and/or diseased retina and, by so doing, highlight the necessity of additional clinical studies dedicated to evaluating the therapeutic utility of strategies that enhance NAD+ levels in improving vision.


Assuntos
Envelhecimento/metabolismo , NAD/metabolismo , Retina/metabolismo , Retina/patologia , Degeneração Retiniana/metabolismo , Degeneração Retiniana/patologia , Animais , Vias Biossintéticas , Humanos , Mitocôndrias/metabolismo , NAD/biossíntese
11.
Redox Biol ; 28: 101314, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31514051

RESUMO

Nuclear factor-erythroid 2 related factor 2 (Nrf2)-mediated signaling plays a central role in maintaining cellular redox homeostasis of hepatic cells. Carbon monoxide releasing molecule-A1 (CORM-A1) has been reported to stimulate up-regulation and nuclear translocation of Nrf2 in hepatocytes. However, the role of CORM-A1 in improving lipid metabolism, antioxidant signaling and mitochondrial functions in nonalcoholic steatohepatitis (NASH) is unknown. In this study, we report that CORM-A1 prevents hepatic steatosis in high fat high fructose (HFHF) diet fed C57BL/6J mice, used as model of NASH. The beneficial effects of CORM-A1 in HFHF fed mice was associated with improved lipid homeostasis, Nrf2 activation, upregulation of antioxidant responsive (ARE) genes and increased ATP production. As, mitochondria are intracellular source of reactive oxygen species (ROS) and important sites of lipid metabolism, we further investigated the mechanisms of action of CORM-A1-mediated improvement in mitochondrial function in palmitic acid (PA) treated HepG2 cells. Cellular oxidative stress and cell viability were found to be improved in PA + CORM-A1 treated cells via Nrf2 translocation and activation of cytoprotective genes. Furthermore, in PA treated cells, CORM-A1 improved mitochondrial oxidative stress, membrane potential and rescued mitochondrial biogenesis thru upregulation of Drp1, TFAM, PGC-1α and NRF-1 genes. CORM-A1 treatment improved cellular status by lowering glycolytic respiration and maximizing OCR. Improvement in mitochondrial respiration and increment in ATP production in PA + CORM-A1 treated cells further corroborate our findings. In summary, our data demonstrate for the first time that CORM-A1 ameliorates tissue damage in steatotic liver via Nrf2 activation and improved mitochondrial function, thus, suggesting the anti-NASH potential of CORM-A1.


Assuntos
Boranos/administração & dosagem , Carbonatos/administração & dosagem , Dieta Hiperlipídica/efeitos adversos , Xarope de Milho Rico em Frutose/efeitos adversos , Fator 2 Relacionado a NF-E2/metabolismo , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Animais , Boranos/farmacologia , Carbonatos/farmacologia , Sobrevivência Celular , Modelos Animais de Doenças , Regulação da Expressão Gênica/efeitos dos fármacos , Células Hep G2 , Humanos , Metabolismo dos Lipídeos/efeitos dos fármacos , Masculino , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Hepatopatia Gordurosa não Alcoólica/induzido quimicamente , Hepatopatia Gordurosa não Alcoólica/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Ácido Palmítico/farmacologia , Transdução de Sinais/efeitos dos fármacos
12.
Redox Biol ; 28: 101336, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31590045

RESUMO

The retinal pigment epithelium (RPE) is consistently exposed to high levels of pro-oxidant and inflammatory stimuli. As such, under normal conditions the antioxidant machinery in the RPE cell is one of the most efficient in the entire body. However, antioxidant defense mechanisms are often impacted negatively by the process of aging and/or degenerative disease leaving RPE susceptible to damage which contributes to retinal dysfunction. Thus, understanding better the mechanisms governing antioxidant responses in RPE is critically important. Here, we evaluated the role of the redox sensitive microRNA miR-144 in regulation of antioxidant signaling in human and mouse RPE. In cultured human RPE, miR-144-3p and miR-144-5p expression was upregulated in response to pro-oxidant stimuli. Likewise, overexpression of miR-144-3p and -5p using targeted miR mimics was associated with reduced expression of Nrf2 and downstream antioxidant target genes (NQO1 and GCLC), reduced levels of glutathione and increased RPE cell death. Alternately, some protection was conferred against the above when miR-144-3p and miR-144-5p expression was suppressed using antagomirs. Expression analyses revealed a higher conservation of miR-144-3p expression across species and additionally, the presence of two potential Nrf2 binding sites in the 3p sequence compared to only one in the 5p sequence. Thus, we evaluated the impact of miR-144-3p expression in the retinas of mice in which a robust pro-oxidant environment was generated using sodium iodate (SI). Subretinal injection of miR-144-3p antagomir in SI mice preserved retinal integrity and function, decreased oxidative stress, limited apoptosis and enhanced antioxidant gene expression. Collectively, the present work establishes miR-144 as a potential target for preventing and treating degenerative retinal diseases in which oxidative stress is paramount and RPE is prominently affected (e.g., age-related macular degeneration and diabetic retinopathy).


Assuntos
Antioxidantes/metabolismo , MicroRNAs/genética , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Degeneração Retiniana/etiologia , Degeneração Retiniana/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Transdução de Sinais , Regiões 3' não Traduzidas , Animais , Linhagem Celular , Humanos , Masculino , Camundongos , Modelos Biológicos , Interferência de RNA , Degeneração Retiniana/patologia , Transdução de Sinais/efeitos dos fármacos
14.
Antioxidants (Basel) ; 8(9)2019 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-31443378

RESUMO

Stress-associated premature senescence (SAPS) is involved in retinal microvascular injury and diabetic retinopathy. We have investigated the role and mode of action of miR-34a in retinal endothelial cells senescence in response to glucidic stress. Human retinal microvascular endothelial cells (HuREC) were exposed to glucidic stress (high glucose (HG) = 25 mM d-glucose) and compared to cells exposed to normal glucose (NG = 5 mM) or the osmotic control l-glucose (LG = 25 mM). HG stimulation of HuREC increased the expression of miR-34a and induced cellular senescence. HG also increased the expression of p16ink4a and p21waf1, while decreasing the histone deacetylase SIRT1. These effects were associated with diminished mitochondrial function and loss of mitochondrial biogenesis factors (i.e., PGC-1α, NRF1, and TFAM). Transfection of the cells with miR-34a inhibitor (IB) halted HG-induced mitochondrial dysfunction and up-regulation of senescence-associated markers, whereas miR-34a mimic promoted cellular senescence and mitochondrial dysfunction. Moreover, HG lowered levels of the mitochondrial antioxidants TrxR2 and SOD2, an effect blunted by miR-34a IB, and promoted by miR-34a mimic. 3'-UTR (3'-untranslated region) reporter assay of both genes validated TrxR2 as a direct target of miR-34a, but not SOD2. Our results show that miR-34a is a key player of HG-induced SAPS in retinal endothelial cells via multiple pathways involved in mitochondrial function and biogenesis.

15.
Diabetes ; 68(5): 1014-1025, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30728185

RESUMO

We have investigated the contributing role of monosodium urate (MSU) to the pathological processes associated with the induction of diabetic retinopathy (DR). In human postmortem retinas and vitreous from donors with DR, we have found a significant increase in MSU levels that correlated with the presence of inflammatory markers and enhanced expression of xanthine oxidase. The same elevation in MSU levels was also detected in serum and vitreous of streptozotocin-induced diabetic rats (STZ-rats) analyzed at 8 weeks of hyperglycemia. Furthermore, treatments of STZ-rats with the hypouricemic drugs allopurinol (50 mg/kg) and benzbromarone (10 mg/kg) given every other day resulted in a significant decrease of retinal and plasma levels of inflammatory cytokines and adhesion factors, a marked reduction of hyperglycemia-induced retinal leukostasis, and restoration of retinal blood-barrier function. These results were associated with effects of the hypouricemic drugs on downregulating diabetes-induced levels of oxidative stress markers as well as expression of components of the NOD-like receptor family pyrin domain-containing protein 3 (NLRP3) inflammasome such as NLRP3, Toll-like receptor 4, and interleukin-1ß. The outcomes of these studies support a contributing role of MSU in diabetes-induced retinal inflammation and suggest that asymptomatic hyperuricemia should be considered as a risk factor for DR induction and progression.


Assuntos
Retinopatia Diabética/imunologia , Retinopatia Diabética/patologia , Ácido Úrico/efeitos adversos , Ácido Úrico/metabolismo , Alopurinol/uso terapêutico , Animais , Benzobromarona/uso terapêutico , Diabetes Mellitus Experimental , Retinopatia Diabética/tratamento farmacológico , Retinopatia Diabética/etiologia , Humanos , Hiperuricemia/complicações , Inflamação/tratamento farmacológico , Inflamação/etiologia , Inflamação/imunologia , Inflamação/patologia , Masculino , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Ratos , Retina/efeitos dos fármacos , Retina/metabolismo , Retina/patologia , Fatores de Risco , Ácido Úrico/sangue , Corpo Vítreo/metabolismo , Xantina Oxidase/metabolismo
16.
Aging (Albany NY) ; 10(6): 1306-1323, 2018 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-29905535

RESUMO

Retinal pigment epithelium (RPE) performs numerous functions critical to retinal health and visual function. RPE senescence is a hallmark of aging and degenerative retinal disease development. Here, we evaluated the temporal expression of key nicotinamide adenine dinucleotide (NAD+)-biosynthetic genes and associated levels of NAD+, a principal regulator of energy metabolism and cellular fate, in mouse RPE. NAD+ levels declined with age and correlated directly with decreased nicotinamide phosphoribosyltransferase (NAMPT) expression, increased expression of senescence markers (p16INK4a, p21Waf/Cip1, ApoJ, CTGF and ß-galactosidase) and significant reductions in SIRT1 expression and activity. We simulated in vitro the age-dependent decline in NAD+ and the related increase in RPE senescence in human (ARPE-19) and mouse primary RPE using the NAMPT inhibitor FK866 and demonstrated the positive impact of NAD+-enhancing therapies on RPE cell viability. This, we confirmed in vivo in the RPE of mice injected sub-retinally with FK866 in the presence or absence of nicotinamide mononucleotide. Our data confirm the importance of NAD+ to RPE cell biology normally and in aging and demonstrate the potential utility of therapies targeting NAMPT and NAD+ biosynthesis to prevent or alleviate consequences of RPE senescence in aging and/or degenerative retinal diseases in which RPE dysfunction is a crucial element.


Assuntos
Envelhecimento/fisiologia , Citocinas/metabolismo , NAD/metabolismo , Nicotinamida Fosforribosiltransferase/metabolismo , Epitélio Pigmentado da Retina , Acrilamidas/farmacologia , Animais , Células Cultivadas , Células Epiteliais , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Masculino , Camundongos , Mononucleotídeo de Nicotinamida/farmacologia , Piperidinas/farmacologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa
17.
Toxicol Appl Pharmacol ; 348: 14-21, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29660437

RESUMO

Patients with cirrhosis have reduced systemic vascular resistance and elevated circulating bile acids (BAs). Previously, we showed that secondary conjugated BAs impair vascular tone by reducing vascular smooth muscle cell (VSMC) Ca2+ influx. In this study, we investigated the effect of deoxycholylglycine (DCG), on Ca2+ sensitivity in reducing vascular tone. First, we evaluated the effects of DCG on U46619- and phorbol-myristate-acetate (PMA)-induced vasoconstriction. DCG reduced U46619-induced vascular tone but failed to reduce PMA-induced vasoconstriction. Then, by utilizing varied combinations of diltiazem (voltage-dependent Ca2+ channel [VDCC] inhibitor), Y27632 (RhoA kinase [ROCK] inhibitor) and chelerythrine (PKC inhibitor) for the effect of DCG on U46619-induced vasoconstriction, we ascertained that DCG inhibits VDCC and ROCK pathway with no effect on PKC. We further assessed the effect of DCG on ROCK pathway. In ß-escin-permeabilized arteries, DCG reduced high-dose Ca2+- and GTPγS (a ROCK activator)-induced vasoconstriction. In rat vascular smooth muscle cells (VSMCs), DCG reduced U46619-induced phosphorylation of myosin light chain subunit (MLC20) and myosin phosphatase target subunit-1 (MYPT1). In permeabilized VSMCs, DCG reduced Ca2+- and GTPγS-mediated MLC20 and MYPT1 phosphorylation, and further, reduced GTPγS-mediated membrane translocation of RhoA. In VSMCs, long-term treatment with DCG had no effect on ROCK2 and RhoA expression. In conclusion, DCG attenuates vascular Ca2+ sensitivity and tone via inhibiting ROCK pathway. These results enhance our understanding of BAs-mediated regulation of vascular tone and provide a platform to develop new treatment strategies to reduce arterial dysfunction in cirrhosis.


Assuntos
Sinalização do Cálcio/efeitos dos fármacos , Ácido Glicodesoxicólico/farmacologia , Artérias Mesentéricas/efeitos dos fármacos , Vasodilatação/efeitos dos fármacos , Vasodilatadores/farmacologia , Quinases Associadas a rho/antagonistas & inibidores , Animais , Bloqueadores dos Canais de Cálcio/farmacologia , Canais de Cálcio/efeitos dos fármacos , Canais de Cálcio/metabolismo , Células Cultivadas , Relação Dose-Resposta a Droga , Técnicas In Vitro , Masculino , Artérias Mesentéricas/enzimologia , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/enzimologia , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/enzimologia , Cadeias Leves de Miosina/metabolismo , Fosforilação , Proteína Quinase C/metabolismo , Proteína Fosfatase 1/metabolismo , Ratos Sprague-Dawley , Vasoconstrição/efeitos dos fármacos , Quinases Associadas a rho/metabolismo
18.
Proc Natl Acad Sci U S A ; 114(50): 13248-13253, 2017 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-29180438

RESUMO

The potential therapeutic effects of agonistic analogs of growth hormone-releasing hormone (GHRH) and their mechanism of action were investigated in diabetic retinopathy (DR). Streptozotocin-induced diabetic rats (STZ-rats) were treated with 15 µg/kg GHRH agonist, MR-409, or GHRH antagonist, MIA-602. At the end of treatment, morphological and biochemical analyses assessed the effects of these compounds on retinal neurovascular injury induced by hyperglycemia. The expression levels of GHRH and its receptor (GHRH-R) measured by qPCR and Western blotting were significantly down-regulated in retinas of STZ-rats and in human diabetic retinas (postmortem) compared with their respective controls. Treatment of STZ-rats with the GHRH agonist, MR-409, prevented retinal morphological alteration induced by hyperglycemia, particularly preserving survival of retinal ganglion cells. The reverse, using the GHRH antagonist, MIA-602, resulted in worsening of retinal morphology and a significant alteration of the outer retinal layer. Explaining these results, we have found that MR-409 exerted antioxidant and anti-inflammatory effects in retinas of the treated rats, as shown by up-regulation of NRF-2-dependent gene expression and down-regulation of proinflammatory cytokines and adhesion molecules. MR-409 also significantly down-regulated the expression of vascular endothelial growth factor while increasing that of pigment epithelium-derived factor in diabetic retinas. These effects correlated with decreased vascular permeability. In summary, our findings suggest a neurovascular protective effect of GHRH analogs during the early stage of diabetic retinopathy through their antioxidant and anti-inflammatory properties.


Assuntos
Anti-Inflamatórios/farmacologia , Retinopatia Diabética/tratamento farmacológico , Hormônio Liberador de Hormônio do Crescimento/agonistas , Sermorelina/análogos & derivados , Animais , Anti-Inflamatórios/uso terapêutico , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/metabolismo , Citocinas/genética , Citocinas/metabolismo , Retinopatia Diabética/metabolismo , Fator de Transcrição de Proteínas de Ligação GA/genética , Fator de Transcrição de Proteínas de Ligação GA/metabolismo , Hormônio Liberador de Hormônio do Crescimento/antagonistas & inibidores , Humanos , Masculino , Ratos , Ratos Sprague-Dawley , Retina/efeitos dos fármacos , Retina/metabolismo , Sermorelina/farmacologia , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
20.
Oncotarget ; 8(19): 30706-30722, 2017 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-28430609

RESUMO

In cirrhosis, changes in pressure-mediated vascular tone, a key determinant of systemic vascular resistance (SVR), are unknown. To address this gap in knowledge, we assessed ex vivo dynamics of pressurized mesenteric resistance arteries (diameter ~ 260 µm) from bile duct-ligated (BDL) and sham-operated (SHAM) rats and determined the underlying mechanisms. At isobaric intraluminal pressure (70 mmHg) as well as with step-wise increase in pressure (10-110 mmHg), arteries from SHAM-rats constricted more than BDL-rats, and had reduced luminal area. In both groups, incubation with LNAME (a NOS inhibitor) had no effect on pressure-mediated tone, and expression of NOS isoforms were similar. TEA, which enhances Ca2+ influx, augmented arterial tone only in SHAM-rats, with minimal effect in those from BDL-rats that was associated with reduced expression of Ca2+ channel TRPC6. In permeabilized arteries, high-dose Ca2+ and γGTP enhanced the vascular tone, which remained lower in BDL-rats that was associated with reduced ROCK2 and pMLC expression. Further, compared to SHAM-rats, in BDL-rats, arteries had reduced collagen expression which was associated with increased expression and activity of MMP-9. BDL-rats also had increased plasma reactive oxygen species (ROS). In vascular smooth muscle cells in vitro, peroxynitrite enhanced MMP-9 activity and reduced ROCK2 expression. These data provide evidence that in cirrhosis, pressure-mediated tone is reduced in resistance arteries, and suggest that circulating ROS play a role in reducing Ca2+ sensitivity and enhancing elasticity to induce arterial adaptations. These findings provide insights into mechanisms underlying attenuated SVR in cirrhosis.


Assuntos
Artérias/fisiologia , Pressão Sanguínea , Resistência Vascular , Ácido 15-Hidroxi-11 alfa,9 alfa-(epoximetano)prosta-5,13-dienoico/farmacologia , Animais , Artérias/fisiopatologia , Pressão Sanguínea/efeitos dos fármacos , Cálcio/metabolismo , Expressão Gênica , Hipertensão Portal/etiologia , Hipertensão Portal/fisiopatologia , Cirrose Hepática/complicações , Cirrose Hepática/etiologia , Metaloproteinase 9 da Matriz/metabolismo , Artérias Mesentéricas/fisiologia , Artérias Mesentéricas/fisiopatologia , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/fisiopatologia , Estresse Oxidativo , Ratos , Espécies Reativas de Oxigênio/sangue , Canal de Cátion TRPC6/genética , Canal de Cátion TRPC6/metabolismo , Resistência Vascular/efeitos dos fármacos , Vasoconstrição/efeitos dos fármacos , Vasoconstritores/farmacologia , Quinases Associadas a rho/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA