Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Lancet Microbe ; 5(6): e570-e580, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38734030

RESUMO

BACKGROUND: Bacterial diversity could contribute to the diversity of tuberculosis infection and treatment outcomes observed clinically, but the biological basis of this association is poorly understood. The aim of this study was to identify associations between phenogenomic variation in Mycobacterium tuberculosis and tuberculosis clinical features. METHODS: We developed a high-throughput platform to define phenotype-genotype relationships in M tuberculosis clinical isolates, which we tested on a set of 158 drug-sensitive M tuberculosis strains sampled from a large tuberculosis clinical study in Ho Chi Minh City, Viet Nam. We tagged the strains with unique genetic barcodes in multiplicate, allowing us to pool the strains for in-vitro competitive fitness assays across 16 host-relevant antibiotic and metabolic conditions. Relative fitness was quantified by deep sequencing, enumerating output barcode read counts relative to input normalised values. We performed a genome-wide association study to identify phylogenetically linked and monogenic mutations associated with the in-vitro fitness phenotypes. These genetic determinants were further associated with relevant clinical outcomes (cavitary disease and treatment failure) by calculating odds ratios (ORs) with binomial logistic regressions. We also assessed the population-level transmission of strains associated with cavitary disease and treatment failure using terminal branch length analysis of the phylogenetic data. FINDINGS: M tuberculosis clinical strains had diverse growth characteristics in host-like metabolic and drug conditions. These fitness phenotypes were highly heritable, and we identified monogenic and phylogenetically linked variants associated with the fitness phenotypes. These data enabled us to define two genetic features that were associated with clinical outcomes. First, mutations in Rv1339, a phosphodiesterase, which were associated with slow growth in glycerol, were further associated with treatment failure (OR 5·34, 95% CI 1·21-23·58, p=0·027). Second, we identified a phenotypically distinct slow-growing subclade of lineage 1 strains (L1.1.1.1) that was associated with cavitary disease (OR 2·49, 1·11-5·59, p=0·027) and treatment failure (OR 4·76, 1·53-14·78, p=0·0069), and which had shorter terminal branch lengths on the phylogenetic tree, suggesting increased transmission. INTERPRETATION: Slow growth under various antibiotic and metabolic conditions served as in-vitro intermediate phenotypes underlying the association between M tuberculosis monogenic and phylogenetically linked mutations and outcomes such as cavitary disease, treatment failure, and transmission potential. These data suggest that M tuberculosis growth regulation is an adaptive advantage for bacterial success in human populations, at least in some circumstances. These data further suggest markers for the underlying bacterial processes that contribute to these clinical outcomes. FUNDING: National Health and Medical Research Council/A∗STAR, National Institutes of Allergy and Infectious Diseases, National Institute of Child Health and Human Development, and the Wellcome Trust Fellowship in Public Health and Tropical Medicine.


Assuntos
Antituberculosos , Mycobacterium tuberculosis , Tuberculose , Humanos , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/efeitos dos fármacos , Tuberculose/tratamento farmacológico , Tuberculose/microbiologia , Vietnã/epidemiologia , Antituberculosos/uso terapêutico , Antituberculosos/farmacologia , Estudo de Associação Genômica Ampla , Resultado do Tratamento , Fenótipo , Filogenia , Mutação , Fenômica , Genótipo , Feminino , Adulto , Masculino
2.
J Clin Microbiol ; 62(4): e0128723, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38466092

RESUMO

Mortality from tuberculous meningitis (TBM) remains around 30%, with most deaths occurring within 2 months of starting treatment. Mortality from drug-resistant strains is higher still, making early detection of drug resistance (DR) essential. Targeted next-generation sequencing (tNGS) produces high read depths, allowing the detection of DR-associated alleles with low frequencies. We applied Deeplex Myc-TB-a tNGS assay-to cerebrospinal fluid (CSF) samples from 72 adults with microbiologically confirmed TBM and compared its genomic drug susceptibility predictions to a composite reference standard of phenotypic susceptibility testing (pDST) and whole genome sequencing, as well as to clinical outcomes. Deeplex detected Mycobacterium tuberculosis complex DNA in 24/72 (33.3%) CSF samples and generated full DR reports for 22/24 (91.7%). The read depth generated by Deeplex correlated with semi-quantitative results from MTB/RIF Xpert. Alleles with <20% frequency were seen at canonical loci associated with first-line DR. Disregarding these low-frequency alleles, Deeplex had 100% concordance with the composite reference standard for all drugs except pyrazinamide and streptomycin. Three patients had positive CSF cultures after 30 days of treatment; reference tests and Deeplex identified isoniazid resistance in two, and Deeplex alone identified low-frequency rifampin resistance alleles in one. Five patients died, of whom one had pDST-identified pyrazinamide resistance. tNGS on CSF can rapidly and accurately detect drug-resistant TBM, but its application is limited to those with higher bacterial loads. In those with lower bacterial burdens, alternative approaches need to be developed for both diagnosis and resistance detection.


Assuntos
Mycobacterium tuberculosis , Tuberculose Meníngea , Tuberculose Resistente a Múltiplos Medicamentos , Adulto , Humanos , Tuberculose Meníngea/diagnóstico , Tuberculose Meníngea/tratamento farmacológico , Tuberculose Meníngea/líquido cefalorraquidiano , Mycobacterium tuberculosis/genética , Pirazinamida , Sensibilidade e Especificidade , Rifampina/farmacologia , Rifampina/uso terapêutico , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia , Líquido Cefalorraquidiano , Testes de Sensibilidade Microbiana
3.
BMC Infect Dis ; 24(1): 163, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38321395

RESUMO

BACKGROUND: Diagnosis of tuberculous meningitis (TBM) is hampered by the lack of a gold standard. Current microbiological tests lack sensitivity and clinical diagnostic approaches are subjective. We therefore built a diagnostic model that can be used before microbiological test results are known. METHODS: We included 659 individuals aged [Formula: see text] years with suspected brain infections from a prospective observational study conducted in Vietnam. We fitted a logistic regression diagnostic model for TBM status, with unknown values estimated via a latent class model on three mycobacterial tests: Ziehl-Neelsen smear, Mycobacterial culture, and GeneXpert. We additionally re-evaluated mycobacterial test performance, estimated individual mycobacillary burden, and quantified the reduction in TBM risk after confirmatory tests were negative. We also fitted a simplified model and developed a scoring table for early screening. All models were compared and validated internally. RESULTS: Participants with HIV, miliary TB, long symptom duration, and high cerebrospinal fluid (CSF) lymphocyte count were more likely to have TBM. HIV and higher CSF protein were associated with higher mycobacillary burden. In the simplified model, HIV infection, clinical symptoms with long duration, and clinical or radiological evidence of extra-neural TB were associated with TBM At the cutpoints based on Youden's Index, the sensitivity and specificity in diagnosing TBM for our full and simplified models were 86.0% and 79.0%, and 88.0% and 75.0% respectively. CONCLUSION: Our diagnostic model shows reliable performance and can be developed as a decision assistant for clinicians to detect patients at high risk of TBM. Diagnosis of tuberculous meningitis is hampered by the lack of gold standard. We developed a diagnostic model using latent class analysis, combining confirmatory test results and risk factors. Models were accurate, well-calibrated, and can support both clinical practice and research.


Assuntos
Infecções por HIV , Mycobacterium tuberculosis , Tuberculose Meníngea , Humanos , Idoso , Tuberculose Meníngea/diagnóstico , Análise de Classes Latentes , Teorema de Bayes , Sensibilidade e Especificidade , Convulsões
4.
bioRxiv ; 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-38045287

RESUMO

Antibiotic tolerance in Mycobacterium tuberculosis leads to less effective bacterial killing, poor treatment responses and resistant emergence. There is limited understanding of antibiotic tolerance in clinical isolates of M. tuberculosis. Therefore, we investigated the rifampicin tolerance of M. tuberculosis isolates, with or without pre-existing isoniazid-resistance. In-vitro rifampicin survival fractions determined by minimum duration of killing assay in isoniazid susceptible (n=119) and resistant (n=84) M. tuberculosis isolates. Rifampicin tolerance was correlated with bacterial growth, rifampicin minimum inhibitory concentrations (MICs) and isoniazid-resistant mutations. The longitudinal isoniazid-resistant isolates were analyzed for rifampicin tolerance based on collection time from patients and associated emergence of genetic variants. The median duration of rifampicin exposure reducing the M. tuberculosis surviving fraction by 90% (minimum duration of killing-MDK90) increased from 1.23 (95%CI 1.11; 1.37) and 1.31 (95%CI 1.14; 1.48) to 2.55 (95%CI 2.04; 2.97) and 1.98 (95%CI 1.69; 2.56) days, for IS and IR respectively, during 15 to 60 days of incubation respectively. Increase in MDK90 time indicated the presence of fast and slow growing tolerant sub-populations. A range of 6 log10-fold survival fraction enabled classification of tolerance as low, medium or high and revealed isoniazid-resistance association with increased tolerance with faster growth (OR=2.68 for low vs. medium, OR=4.42 for low vs. high, P-trend=0.0003). The high tolerance in longitudinal isoniazid-resistant isolates was specific to those collected during rifampicin treatment in patients and associated with bacterial genetic microvariants. Our study identifies a range of rifampicin tolerance and reveals that isoniazid resistance is associated with higher tolerance with growth fitness. Furthermore, rifampicin treatment may select isoniazid-resistant isolate microvariants with higher rifampicin tolerance, with survival potential similar to multi-drug resistant isolates. These findings suggest that isoniazid-resistant tuberculosis needs to be evaluated for rifampicin tolerance or needs further improvement in treatment regimen. It is made available under a CC-BY 4.0 International license.

5.
bioRxiv ; 2023 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-37090677

RESUMO

Background: Combatting the tuberculosis (TB) epidemic caused by Mycobacterium tuberculosis ( Mtb ) necessitates a better understanding of the factors contributing to patient clinical outcomes and transmission. While host and environmental factors have been evaluated, the impact of Mtb genetic background and phenotypic diversity is underexplored. Previous work has made associations between Mtb genetic lineages and some clinical and epidemiological features, but the bacterial traits underlying these connections are largely unknown. Methods: We developed a high-throughput functional genomics platform for defining genotype-phenotype relationships across a panel of Mtb clinical isolates. These phenotypic fitness profiles function as intermediate traits which can be linked to Mtb genetic variants and associated with clinical and epidemiological outcomes. We applied this approach to a collection of 158 Mtb strains from a study of Mtb transmission in Ho Chi Minh City, Vietnam. Mtb strains were genetically tagged in multiplicate, which allowed us to pool the strains and assess in vitro competitive fitness using deep sequencing across a set of 14 host-relevant antibiotic and metabolic conditions. Phylogenetic and monogenic associations with these intermediate traits were identified and then associated with clinical outcomes. Findings: Mtb clinical strains have a broad range of growth and drug response dynamics that can be clustered by their phylogenetic relationships. We identified novel monogenic associations with Mtb fitness in various metabolic and antibiotic conditions. Among these, we find that mutations in Rv1339 , a phosphodiesterase, which were identified through their association with slow growth in glycerol, are further associated with treatment failure. We also identify a previously uncharacterized subclade of Lineage 1 strains (L1.1.1.1) that is phenotypically distinguished by slow growth under most antibiotic and metabolic stress conditions in vitro . This clade is associated with cavitary disease, treatment failure, and demonstrates increased transmission potential. Interpretation: High-throughput phenogenotyping of Mtb clinical strains enabled bacterial intermediate trait identification that can provide a mechanistic link between Mtb genetic variation and patient clinical outcomes. Mtb strains associated with cavitary disease, treatment failure, and transmission potential display intermediate phenotypes distinguished by slow growth under various antibiotic and metabolic conditions. These data suggest that Mtb growth regulation is an adaptive advantage for host bacterial success in human populations, in at least some circumstances. These data further suggest markers for the underlying bacterial processes that govern these clinical outcomes. Funding: National Institutes of Allergy and Infectious Diseases: P01 AI132130 (SS, SMF); P01 AI143575 (XW, SMF); U19 AI142793 (QL, SMF); 5T32AI132120-03 (SS); 5T32AI132120-04 (SS); 5T32AI049928-17 (SS) Wellcome Trust Fellowship in Public Health and Tropical Medicine: 097124/Z/11/Z (NTTT) National Health and Medical Research Council (NHMRC)/A*STAR joint call: APP1056689 (SJD) The funding sources had no involvement in study methodology, data collection, analysis, and interpretation nor in the writing or submission of the manuscript. Research in context: Evidence before this study: We used different combinations of the words mycobacterium tuberculosis, tuberculosis, clinical strains, intermediate phenotypes, genetic barcoding, phenogenomics, cavitary disease, treatment failure, and transmission to search the PubMed database for all studies published up until January 20 th , 2022. We only considered English language publications, which biases our search. Previous work linking Mtb determinants to clinical or epidemiological data has made associations between bacterial lineage, or less frequently, genetic polymorphisms to in vitro or in vivo models of pathogenesis, transmission, and clinical outcomes such as cavitary disease, treatment failure, delayed culture conversion, and severity. Many of these studies focus on the global pandemic Lineage 2 and Lineage 4 Mtb strains due in part to a deletion in a polyketide synthase implicated in host-pathogen interactions. There are a number of Mtb GWAS studies that have led to novel genetic determinants of in vitro drug resistance and tolerance. Previous Mtb GWAS analyses with clinical outcomes did not experimentally test any predicted phenotypes of the clinical strains. Published laboratory-based studies of Mtb clinical strains involve relatively small numbers of strains, do not identify the genetic basis of relevant phenotypes, or link findings to the corresponding clinical outcomes. There are two recent studies of other pathogens that describe phenogenomic analyses. One study of 331 M. abscessus clinical strains performed one-by-one phenotyping to identify bacterial features associated with clearance of infection and another details a competition experiment utilizing three barcoded Plasmodium falciparum clinical isolates to assay antimalarial fitness and resistance. Added value of this study: We developed a functional genomics platform to perform high-throughput phenotyping of Mtb clinical strains. We then used these phenotypes as intermediate traits to identify novel bacterial genetic features associated with clinical outcomes. We leveraged this platform with a sample of 158 Mtb clinical strains from a cross sectional study of Mtb transmission in Ho Chi Minh City, Vietnam. To enable high-throughput phenotyping of large numbers of Mtb clinical isolates, we applied a DNA barcoding approach that has not been previously utilized for the high-throughput analysis of Mtb clinical strains. This approach allowed us to perform pooled competitive fitness assays, tracking strain fitness using deep sequencing. We measured the replicative fitness of the clinical strains in multiplicate under 14 metabolic and antibiotic stress condition. To our knowledge, this is the largest phenotypic screen of Mtb clinical isolates to date. We performed bacterial GWAS to delineate the Mtb genetic variants associated with each fitness phenotype, identifying monogenic associations with several conditions. We then defined Mtb phenotypic and genetic features associated with clinical outcomes. We find that a subclade of Mtb strains, defined by variants largely involved in fatty acid metabolic pathways, share a universal slow growth phenotype that is associated with cavitary disease, treatment failure and increased transmission potential in Vietnam. We also find that mutations in Rv1339 , a poorly characterized phosphodiesterase, also associate with slow growth in vitro and with treatment failure in patients. Implications of all the available evidence: Phenogenomic profiling demonstrates that Mtb strains exhibit distinct growth characteristics under metabolic and antibiotic stress conditions. These fitness profiles can serve as intermediate traits for GWAS and association with clinical outcomes. Intermediate phenotyping allows us to examine potential processes by which bacterial strain differences contribute to clinical outcomes. Our study identifies clinical strains with slow growth phenotypes under in vitro models of antibiotic and host-like metabolic conditions that are associated with adverse clinical outcomes. It is possible that the bacterial intermediate phenotypes we identified are directly related to the mechanisms of these outcomes, or they may serve as markers for the causal yet unidentified bacterial determinants. Via the intermediate phenotyping, we also discovered a surprising diversity in Mtb responses to the new anti-mycobacterial drugs that target central metabolic processes, which will be important in considering roll-out of these new agents. Our study and others that have identified Mtb determinants of TB clinical and epidemiological phenotypes should inform efforts to improve diagnostics and drug regimen design.

6.
J Clin Microbiol ; 61(4): e0163422, 2023 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-37010411

RESUMO

Offering patients with tuberculosis (TB) an optimal and timely treatment regimen depends on the rapid detection of Mycobacterium tuberculosis (Mtb) drug resistance from clinical samples. Finding Low Abundance Sequences by Hybridization (FLASH) is a technique that harnesses the efficiency, specificity, and flexibility of the Cas9 enzyme to enrich targeted sequences. Here, we used FLASH to amplify 52 candidate genes probably associated with resistance to first- and second-line drugs in the Mtb reference strain (H37Rv), then detect drug resistance mutations in cultured Mtb isolates, and in sputum samples. 92% of H37Rv reads mapped to Mtb targets, with 97.8% of target regions covered at a depth ≥ 10X. Among cultured isolates, FLASH-TB detected the same 17 drug resistance mutations as whole genome sequencing (WGS) did, but with much greater depth. Among the 16 sputum samples, FLASH-TB increased recovery of Mtb DNA compared with WGS (from 1.4% [IQR 0.5-7.5] to 33% [IQR 4.6-66.3]) and average depth reads of targets (from 6.3 [IQR 3.8-10.5] to 1991 [IQR 254.4-3623.7]). FLASH-TB identified Mtb complex in all 16 samples based on IS1081 and IS6110 copies. Drug resistance predictions for 15/16 (93.7%) clinical samples were highly concordant with phenotypic DST for isoniazid, rifampicin, amikacin, and kanamycin [15/15 (100%)], ethambutol [12/15 (80%)] and moxifloxacin [14/15 (93.3%)]. These results highlighted the potential of FLASH-TB for detecting Mtb drug resistance from sputum samples.


Assuntos
Mycobacterium tuberculosis , Tuberculose Resistente a Múltiplos Medicamentos , Tuberculose , Humanos , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Escarro/microbiologia , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia , Tuberculose/tratamento farmacológico , Mycobacterium tuberculosis/genética , Testes de Sensibilidade Microbiana
7.
Tuberculosis (Edinb) ; 128: 102084, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33965677

RESUMO

New tools to monitor treatment response and predict outcome from tuberculous meningitis (TBM) are urgently required. We retrospectively evaluated the 16S rRNA-based molecular bacterial load assay (MBLA) to quantify viable Mycobacterium tuberculosis in serial cerebrospinal fluid (CSF) from adults with TBM. 187 CSF samples were collected before and during the first two months of treatment from 99 adults TBM, comprising 56 definite, 43 probable or possible TBM, and 18 non-TBM and preserved at -80°C prior to MBLA. We compared MBLA against MGIT culture, GeneXpert MTB/RIF (Xpert) and Ziehl-Neelsen (ZN) smear. Before treatment, MBLA was positive in 34/99 (34.3%), significantly lower than MGIT 47/99 (47.5%), Xpert 51/99 (51.5%) and ZN smear 55/99 (55.5%). After one month of treatment, MBLA and MGIT were positive in 3/38 (7.9%) and 4/38 (10.5%), respectively, whereas Xpert and ZN smear remained positive in 19/38 (50.0%) and 18/38 (47.4%). In summary, MBLA was less likely to detect CSF bacteria before the start of treatment compared with MGIT culture, Xpert and ZN smear. MBLA and MGIT positivity fell during treatment because of detecting only viable bacteria, whereas Xpert and ZN smear remained positive for longer because of detecting both live and dead bacteria. Sample storage and processing may have reduced MBLA-detectable viable bacteria; and sampling earlier in treatment may yield more useful results. Prospective studies with CSF sampling after 1-2 weeks are warranted.


Assuntos
Carga Bacteriana , Mycobacterium tuberculosis/isolamento & purificação , Tuberculose Meníngea/líquido cefalorraquidiano , Adulto , Feminino , Humanos , Limite de Detecção , Masculino , Pessoa de Meia-Idade , RNA Ribossômico 16S , Estudos Retrospectivos , Tuberculose Meníngea/diagnóstico
8.
Artigo em Inglês | MEDLINE | ID: mdl-33257450

RESUMO

Accurate antibiotic susceptibility testing is essential for successful tuberculosis treatment. Recent studies have highlighted the limitations of MIC-based phenotypic susceptibility methods in detecting other aspects of antibiotic susceptibilities in bacteria. Duration and peak of antibiotic exposure, at or above the MIC required for killing the bacterial population, has emerged as another important factor for determining antibiotic susceptibility. This is broadly defined as antibiotic tolerance. Antibiotic tolerance can further facilitate the emergence of antibiotic resistance. Currently, there are limited methods to quantify antibiotic tolerance among clinical M. tuberculosis isolates. In this study, we develop a most-probable-number (MPN)-based minimum duration of killing (MDK) assay to quantify the spectrum of M. tuberculosis rifampicin susceptibility within subpopulations based on the duration of rifampicin exposure required for killing the bacterial population. MDK90-99 and MDK99.99 were defined as the minimum duration of antibiotic exposure at or above the MIC required for killing 90 to 99% and 99.99% of the initial (pretreatment) bacterial population, respectively. Results from the rifampicin MDK assay applied to 28 laboratory and clinical M. tuberculosis isolates showed that there is variation in rifampicin susceptibility among isolates. The rifampicin MDK99/99.99 time for isolates varied from less than 2 to 10 days. MDK was correlated with larger subpopulations of M. tuberculosis from clinical isolates that were rifampicin tolerant. Our study demonstrates the utility of MDK assays to measure the variation in antibiotic tolerance among clinical M. tuberculosis isolates and further expands clinically important aspects of antibiotic susceptibility testing.


Assuntos
Mycobacterium tuberculosis , Rifampina , Antituberculosos/farmacologia , RNA Polimerases Dirigidas por DNA , Farmacorresistência Bacteriana/genética , Testes de Sensibilidade Microbiana , Rifampina/farmacologia
9.
Lancet Infect Dis ; 20(3): 299-307, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31924551

RESUMO

BACKGROUND: Xpert MTB/RIF Ultra (Xpert Ultra) might have higher sensitivity than its predecessor, Xpert MTB/RIF (Xpert), but its role in tuberculous meningitis diagnosis is uncertain. We aimed to compare Xpert Ultra with Xpert for the diagnosis of tuberculous meningitis in HIV-uninfected and HIV-infected adults. METHODS: In this prospective, randomised, diagnostic accuracy study, adults (≥16 years) with suspected tuberculous meningitis from a single centre in Vietnam were randomly assigned to cerebrospinal fluid testing by either Xpert Ultra or Xpert at baseline and, if treated for tuberculous meningitis, after 3-4 weeks of treatment. Test performance (sensitivity, specificity, and positive and negative predictive values) was calculated for Xpert Ultra and Xpert and compared against clinical and mycobacterial culture reference standards. Analyses were done for all patients and by HIV status. FINDINGS: Between Oct 16, 2017, and Feb 10, 2019, 205 patients were randomly assigned to Xpert Ultra (n=103) or Xpert (n=102). The sensitivities of Xpert Ultra and Xpert for tuberculous meningitis diagnosis against a reference standard of definite, probable, and possible tuberculous meningitis were 47·2% (95% CI 34·4-60·3; 25 of 53 patients) for Xpert Ultra and 39·6% (27·6-53·1; 21 of 53) for Xpert (p=0·56); specificities were 100·0% (95% CI 92·0-100·0; 44 of 44) and 100·0% (92·6-100·0; 48 of 48), respectively. In HIV-negative patients, the sensitivity of Xpert Ultra was 38·9% (24·8-55·1; 14 of 36) versus 22·9% (12·1-39·0; eight of 35) by Xpert (p=0·23). In HIV co-infected patients, the sensitivities were 64·3% (38·8-83·7; nine of 14) for Xpert Ultra and 76·9% (49·7-91·8; ten of 13) for Xpert (p=0·77). Negative predictive values were 61·1% (49·6-71·5) for Xpert Ultra and 60·0% (49·0-70·0) for Xpert. Against a reference standard of mycobacterial culture, sensitivities were 90·9% (72·2-97·5; 20 of 22 patients) for Xpert Ultra and 81·8% (61·5-92·7; 18 of 22) for Xpert (p=0·66); specificities were 93·9% (85·4-97·6; 62 of 66) and 96·9% (89·5-91·2; 63 of 65), respectively. Six (22%) of 27 patients had a positive test by Xpert Ultra after 4 weeks of treatment versus two (9%) of 22 patients by Xpert. INTERPRETATION: Xpert Ultra was not statistically superior to Xpert for the diagnosis of tuberculous meningitis in HIV-uninfected and HIV-infected adults. A negative Xpert Ultra or Xpert test does not rule out tuberculous meningitis. New diagnostic strategies are urgently required. FUNDING: Wellcome Trust and the Foundation for Innovative New Diagnostics.


Assuntos
Técnicas de Diagnóstico Molecular/métodos , Tuberculose Meníngea/diagnóstico , Tuberculose Resistente a Múltiplos Medicamentos/diagnóstico , Infecções por HIV/complicações , Humanos , Valor Preditivo dos Testes , Estudos Prospectivos , Distribuição Aleatória , Sensibilidade e Especificidade , Vietnã
10.
J Infect ; 77(6): 509-515, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30217659

RESUMO

OBJECTIVES: Tuberculous meningitis (TBM) is the severest form of tuberculosis, but current diagnostic tests are insensitive. Recent reports suggest simple modifications to conventional cerebrospinal fluid (CSF) Ziehl-Neelsen (ZN) staining may greatly improve sensitivity. We sought to define the performance of modified and conventional ZN stain for TBM diagnosis. METHODS: In hospitals in Vietnam, South Africa and Indonesia we conducted a prospective study of modified ZN with or without cytospin, conventional ZN smear, GeneXpert, and culture on CSF in adults with suspected TBM. RESULTS: A total of 618 individuals were enrolled across 3 sites. Compared with the TBM clinical diagnostic gold standard for research (definite probable or possible TBM), sensitivity of conventional ZN and modified ZN with cytospin were 33.9% and 34.5% respectively (p = 1.0 for the difference between tests), compared with culture 31.8% and Xpert 25.1%. Using culture as a reference, sensitivities of conventional ZN, modified ZN with cytospin, and Xpert were 66.4%, 67.5%, and 72.3%, respectively. Higher CSF volume and lactate, and lower CSF:blood glucose ratio were independently associated with microbiologically confirmed TBM. CONCLUSIONS: Modified ZN stain does not improve diagnosis of TBM. Currently available tests are insensitive, but testing large CSF volumes improves performance. New diagnostic tests for TBM are urgently required.


Assuntos
Técnicas Bacteriológicas , Testes Diagnósticos de Rotina/métodos , Técnicas de Diagnóstico Molecular , Tuberculose Meníngea/líquido cefalorraquidiano , Tuberculose Meníngea/diagnóstico , Adulto , Líquido Cefalorraquidiano/microbiologia , Corantes , Feminino , Humanos , Indonésia , Internacionalidade , Masculino , Pessoa de Meia-Idade , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/isolamento & purificação , Estudos Prospectivos , Sensibilidade e Especificidade , África do Sul , Coloração e Rotulagem , Tuberculose Meníngea/microbiologia , Vietnã
11.
Clin Infect Dis ; 66(4): 523-532, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29029055

RESUMO

Background: Tuberculous meningitis (TBM) is the most severe form of extrapulmonary tuberculosis. We developed and validated prognostic models for 9-month mortality in adults with TBM, with or without human immunodeficiency virus (HIV) infection. Methods: We included 1699 subjects from 4 randomized clinical trials and 1 prospective observational study conducted at 2 major referral hospitals in Southern Vietnam from 2001-2015. Modeling was based on multivariable Cox proportional hazards regression. The final prognostic models were validated internally and temporally and were displayed using nomograms and a Web-based app (https://thaole.shinyapps.io/tbmapp/). Results: 951 HIV-uninfected and 748 HIV-infected subjects with TBM were included; 219 of 951 (23.0%) and 384 of 748 (51.3%) died during 9-month follow-up. Common predictors for increased mortality in both populations were higher Medical Research Council (MRC) disease severity grade and lower cerebrospinal fluid lymphocyte cell count. In HIV-uninfected subjects, older age, previous tuberculosis, not receiving adjunctive dexamethasone, and focal neurological signs were additional risk factors; in HIV-infected subjects, lower weight, lower peripheral blood CD4 cell count, and abnormal plasma sodium were additional risk factors. The areas under the receiver operating characteristic curves (AUCs) for the final prognostic models were 0.77 (HIV-uninfected population) and 0.78 (HIV-infected population), demonstrating better discrimination than the MRC grade (AUC, 0.66 and 0.70) or Glasgow Coma Scale score (AUC, 0.68 and 0.71) alone. Conclusions: The developed models showed good performance and could be used in clinical practice to assist physicians in identifying patients with TBM at high risk of death and with increased need of supportive care.


Assuntos
Coinfecção/mortalidade , Infecções por HIV/complicações , Modelos Teóricos , Tuberculose Meníngea/mortalidade , Adulto , Fatores Etários , Coinfecção/microbiologia , Coinfecção/virologia , Feminino , Infecções por HIV/microbiologia , Humanos , Masculino , Pessoa de Meia-Idade , Mycobacterium tuberculosis/isolamento & purificação , Nomogramas , Estudos Observacionais como Assunto , Prognóstico , Modelos de Riscos Proporcionais , Curva ROC , Ensaios Clínicos Controlados Aleatórios como Assunto , Índice de Gravidade de Doença , Fatores de Tempo , Vietnã
12.
J Clin Microbiol ; 52(1): 226-33, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24197880

RESUMO

Tuberculous meningitis (TBM) is the most severe form of tuberculosis. Microbiological confirmation is rare, and treatment is often delayed, increasing mortality and morbidity. The GeneXpert MTB/RIF test was evaluated in a large cohort of patients with suspected tuberculous meningitis. Three hundred seventy-nine patients presenting with suspected tuberculous meningitis to the Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam, between 17 April 2011 and 31 December 2012 were included in the study. Cerebrospinal fluid samples were tested by Ziehl-Neelsen smear, mycobacterial growth indicator tube (MGIT) culture, and Xpert MTB/RIF. Rifampin (RIF) resistance results by Xpert were confirmed by an MTBDR-Plus line probe assay and all positive cultures were tested by phenotypic MGIT drug susceptibility testing. Overall, 182/379 included patients (48.0%) were diagnosed with tuberculous meningitis. Sensitivities of Xpert, smear, and MGIT culture among patients diagnosed with TBM were 59.3% (108/182 [95% confidence interval {CI}, 51.8 to 66.5%]), 78.6% (143/182 [95% CI, 71.9 to 84.3%]) and 66.5% (121/182 [95% CI, 59.1 to 73.3%]), respectively. There was one false-positive Xpert MTB/RIF test (99.5% specificity). Four cases of RIF resistance (4/109; 3.7%) were identified by Xpert, of which 3 were confirmed to be multidrug-resistant (MDR) TBM and one was culture negative. Xpert MTB/RIF is a rapid and specific test for the diagnosis of tuberculous meningitis. The addition of a vortexing step to sample processing increased sensitivity for confirmed TBM by 20% (P = 0.04). Meticulous examination of a smear from a large volume of cerebrospinal fluid (CSF) remains the most sensitive technique but is not practical in most laboratories. The Xpert MTB/RIF represents a significant advance in the early diagnosis of this devastating condition.


Assuntos
Antituberculosos/farmacologia , Técnicas de Diagnóstico Molecular/métodos , Mycobacterium tuberculosis/isolamento & purificação , Rifampina/farmacologia , Tuberculose Meníngea/diagnóstico , Adulto , Idoso , Idoso de 80 Anos ou mais , Líquido Cefalorraquidiano/microbiologia , Reações Falso-Positivas , Feminino , Humanos , Masculino , Testes de Sensibilidade Microbiana/métodos , Pessoa de Meia-Idade , Mycobacterium tuberculosis/genética , Sensibilidade e Especificidade , Vietnã , Adulto Jovem
13.
BMC Infect Dis ; 13: 31, 2013 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-23343418

RESUMO

BACKGROUND: Tuberculosis (TB) in children is rarely confirmed due to the lack of effective diagnostic tools; only 10 to 15% of pediatric TB is smear positive due to paucibacillary samples and the difficulty of obtaining high-quality specimens from children. We evaluate here the accuracy of Xpert MTB/RIF in comparison with the Micoroscopic observation drug susceptibility (MODS) assay for diagnosis of TB in children using samples stored during a previously reported evaluation of the MODS assay. METHODS: Ninety-six eligible children presenting with suspected TB were recruited consecutively at Pham Ngoc Thach Hospital in Ho Chi Minh City Viet Nam between May to December 2008 and tested by Ziehl-Neelsen smear, MODS and Mycobacterial growth Indicator (MGIT, Becton Dickinson) culture. All samples sent by the treating clinician for testing were included in the analysis. An aliquot of processed sample deposit was stored at -20°C and tested in the present study by Xpert MTB/RIF test. 183 samples from 73 children were available for analysis by Xpert. Accuracy measures of MODS and Xpert were summarized. RESULTS: The sensitivity (%) in detecting children with a clinical diagnosis of TB for smear, MODS and Xpert were 37.9 [95% CI 25.5; 51.6], 51.7 [38.2; 65.0] and 50.0 [36.6; 63.4], respectively (per patient analysis). Xpert was significantly more sensitive than smear (P=0.046). Testing of additional samples did not increase case detection for MODS while testing of a second sputum sample by Xpert detected only two additional cases. The positive and negative predictive values (%) of Xpert were 100.0 [88.0; 100.0] and 34.1 [20.5; 49.9], respectively, while those of MODS were 96.8 [83.3; 99.9] and 33.3 [19.6; 49.5]. CONCLUSION: MODS culture and Xpert MTB/RIF test have similar sensitivities for the detection of pediatric TB. Xpert MTB RIF is able to detect tuberculosis and rifampicin resistance within two hours. MODS allows isolation of cultures for further drug susceptibility testing but requires approximately one week to become positive. Testing of multiple samples by xpert detected only two additional cases and the benefits must be considered against costs in each setting. Further research is required to evaluate the optimal integration of Xpert into pediatric testing algorithms.


Assuntos
Técnicas Bacteriológicas/métodos , Testes de Sensibilidade Microbiana , Mycobacterium tuberculosis , Kit de Reagentes para Diagnóstico , Tuberculose/diagnóstico , Adolescente , Criança , Pré-Escolar , Farmacorresistência Bacteriana , Humanos , Lactente , Recém-Nascido , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/isolamento & purificação , Reprodutibilidade dos Testes , Rifampina/farmacologia , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA