RESUMO
The extensive usage of synthetic fungicides against fungal diseases has caused adverse impacts on both human and agricultural crops. Therefore, the current study aims to establish a new bacterium 7WMA2, as a biocontrol agent to achieve better antifungal results. The strain 7WMA2 was isolated from marine sediment, displayed a broad spectrum of several fungi that includes Alternaria alternata, Cladosporium sp., Candida albicans, Fusarium oxysporum, Trichosporon pullulans, and Trichophyton rubrum. The 16S rRNA phylogeny inferred that strain 7WMA2 was a member of Brevibacillus. The phylogenetic and biochemical analyses revealed that the strain 7WMA2 belongs to the species of Brevibacillus halotolerans. The complete genome sequence of Brevibacillus halotolerans 7WMA2 consists of a circular chromosome of 5,351,077 bp length with a GC content of 41.39 mol %, including 4433 CDS, 111 tRNA genes, and 36 rRNA genes. The genomic analysis showed 23 putative biosynthetic secondary metabolite gene clusters responsible for non-ribosomal peptides, polyketides and siderophores. The antifungal compounds concentrated from cell-free fermentation broth demonstrated strong inhibition of fungi, and the compounds are considerably thermal stable and adaptable to pH range 2-12. This complete genome sequence has provided insight for further exploration of antagonistic ability and its secondary metabolite compounds indicated feasibility as biological control agents against fungal infections.
Assuntos
Brevibacillus , Fungicidas Industriais , Policetídeos , Antifúngicos/metabolismo , Antifúngicos/farmacologia , Agentes de Controle Biológico/farmacologia , Brevibacillus/genética , Brevibacillus/metabolismo , Fungicidas Industriais/metabolismo , Humanos , Peptídeos/metabolismo , Filogenia , Policetídeos/metabolismo , Policetídeos/farmacologia , RNA Ribossômico 16S/genética , Sideróforos/metabolismoRESUMO
Rice straw residue management is still facing many problems worldwide. This study used two environmentally friendly methods to investigate the effects of rice straw burning activity on water-extracted carbohydrate content in long-term paddy soil. Soil samples were collected at a depth within 0-15 cm at the paddy field before and after burning rice straw (pre-burning and post-burning), then extracted by distilled water at the ratio of 1:10 (soil: water) for measuring hot water (at 80 °C) and water extracted carbohydrate (at 25 °C) (HECH and WECH). The results showed that burning rice straw did not alter soil organic carbon (SOC); however, soil pH increased approximately 8.3%. Meanwhile, WECH and HECH ranged from 233 to 630 mg kg-1, with the highest HECH in Pre-burning treatment, while the lowest amount addressed WECH of Post-burning treatment. Extracted carbohydrate decreased after burning rice straw compared to Pre-burning soil. On the other hand, hot water increased 39-58% of carbohydrates compared to water extraction. We conclude that burning rice straw did not affect SOC but tends to reduce their labile carbon pools, and the heating process likely degrade part of SOC when extracted at high temperatures.