Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Sens ; 5(4): 1230-1238, 2020 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-32233476

RESUMO

As the use of nanoparticles is expanding in many industrial sectors, pharmaceuticals, cosmetics among others, flow-through characterization techniques are often required for in-line metrology. Among the parameters of interest, the concentration and mass of nanoparticles can be informative for yield, aggregates formation or even compliance with regulation. The Suspended Nanochannel Resonator (SNR) can offer mass resolution down to the attogram scale precision in a flow-through format. However, since the readout has been based on the optical lever, operating more than a single resonator at a time has been challenging. Here we present a new architecture of SNR devices with piezoresistive sensors that allows simultaneous readout from multiple resonators. To enable this architecture, we push the limits of nanofabrication to create implanted piezoresistors of nanoscale thickness (∼100 nm) and implement an algorithm for designing SNRs with dimensions optimized for maintaining attogram scale precision. Using 8-in. processing technology, we fabricate parallel array SNR devices which contain ten resonators. While maintaining a precision similar to that of the optical lever, we demonstrate a throughput of 40 000 particles per hour-an order of magnitude improvement over a single device with an analogous flow rate. Finally, we show the capability of the SNR array device for measuring polydisperse solutions of gold particles ranging from 20 to 80 nm in diameter. We envision that SNR array devices will open up new possibilities for nanoscale metrology by measuring not only synthetic but also biological nanoparticles such as exosomes and viruses.


Assuntos
Ouro/química , Técnicas Analíticas Microfluídicas/métodos , Nanopartículas/química
2.
Sci Rep ; 8(1): 17762, 2018 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-30531826

RESUMO

Deterministic lateral displacement (DLD) has been extensively implemented in the last decade for size-based sample preparation, owing to its high separation performances for a wide range of particle dimensions. However, separating particles from 1 µm to 10 µm in one single DLD device is challenging because of the required diversity of pillar dimensions and inherent fabrication issues. This paper presents an alternative approach to achieve the extraction of E. coli bacteria from blood samples spiked with prostate cancer cells. Our approach consists in cascading individual DLD devices in a single automated platform, using flexible chambers that successively collect and inject the sample between each DLD stage without any external sample manipulation. Operating DLD separations independently enables to maximize the sorting efficiency at each step, without any disturbance from downstream stages. The proposed two-step automated protocol is applied to the separation of three types of components (bacteria, blood particles and cancer cells), with a depletion yield of 100% for cancer cells and 93% for red blood cells. This cascaded approach is presented for the first time with two DLD modules and is upscalable to improve the dynamic range of currently available DLD devices.


Assuntos
Eritrócitos/microbiologia , Neoplasias da Próstata/sangue , Neoplasias da Próstata/microbiologia , Linhagem Celular Tumoral , Separação Celular/métodos , Contagem de Eritrócitos/métodos , Escherichia coli/isolamento & purificação , Humanos , Masculino , Técnicas Analíticas Microfluídicas , Células PC-3 , Tamanho da Partícula
3.
Nanotechnology ; 29(43): 435302, 2018 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-30070975

RESUMO

Controlled atomic scale fabrication based on scanning probe patterning or surface assembly typically involves a complex process flow, stringent requirements for an ultra-high vacuum environment, long fabrication times and, consequently, limited throughput and device yield. We demonstrate a device platform that overcomes these limitations by integrating scanning-probe based dopant device fabrication with a CMOS-compatible process flow. Silicon on insulator substrates are used featuring a reconstructed Si(001):H surface that is protected by a capping chip and has pre-implanted contacts ready for scanning tunneling microscope (STM) patterning. Processing in ultra-high vacuum is thereby reduced to a few critical steps. Subsequent reintegration of the samples into the CMOS process flow opens the door to successful application of STM fabricated dopant devices in more complex device architectures. Full functionality of this approach is demonstrated with magnetotransport measurements on degenerately doped STM patterned Si:P nanowires up to room temperature.

4.
PLoS One ; 13(5): e0197629, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29768490

RESUMO

Particle separation in microfluidic devices is a common problematic for sample preparation in biology. Deterministic lateral displacement (DLD) is efficiently implemented as a size-based fractionation technique to separate two populations of particles around a specific size. However, real biological samples contain components of many different sizes and a single DLD separation step is not sufficient to purify these complex samples. When connecting several DLD modules in series, pressure balancing at the DLD outlets of each step becomes critical to ensure an optimal separation efficiency. A generic microfluidic platform is presented in this paper to optimize pressure balancing, when DLD separation is connected either to another DLD module or to a different microfluidic function. This is made possible by generating droplets at T-junctions connected to the DLD outlets. Droplets act as pressure controllers, which perform at the same time the encapsulation of DLD sorted particles and the balance of output pressures. The optimized pressures to apply on DLD modules and on T-junctions are determined by a general model that ensures the equilibrium of the entire platform. The proposed separation platform is completely modular and reconfigurable since the same predictive model applies to any cascaded DLD modules of the droplet-based cartridge.


Assuntos
Técnicas Analíticas Microfluídicas/métodos , Dispositivos Lab-On-A-Chip , Técnicas Analíticas Microfluídicas/instrumentação , Microfluídica , Microscopia de Fluorescência/métodos
5.
Small ; 13(37)2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28783259

RESUMO

Deterministic lateral displacement (DLD) devices enable to separate nanometer to micrometer-sized particles around a cutoff diameter, during their transport through a microfluidic channel with slanted rows of pillars. In order to design appropriate DLD geometries for specific separation sizes, robust models are required to anticipate the value of the cutoff diameter. So far, the proposed models result in a single cutoff diameter for a given DLD geometry. This paper shows that the cutoff diameter actually varies along the DLD channel, especially in narrow pillar arrays. Experimental and numerical results reveal that the variation of the cutoff diameter is induced by boundary effects at the channel side walls, called the wall effect. The wall effect generates unexpected particle trajectories that may compromise the separation efficiency. In order to anticipate the wall effect when designing DLD devices, a predictive model is proposed in this work and has been validated experimentally. In addition to the usual geometrical parameters, a new parameter, the number of pillars in the channel cross dimension, is considered in this model to investigate its influence on the particle trajectories.

6.
Small ; 13(33)2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28677894

RESUMO

Metallic conductive nanowires (NWs) with DNA bundle core are achieved, thanks to an original process relying on double-stranded DNA alignment and physical vapor deposition (PVD) metallization steps involving a silicon substrate. First, bundles of DNA are suspended with a repeatable process between 2 µm high parallel electrodes with separating gaps ranging from 800 nm to 2 µm. The process consists in the drop deposition of a DNA lambda-phage solution on the electrodes followed by a naturally evaporation step. The deposition process is controlled by the DNA concentration within the buffer solution, the drop volume, and the electrode hydrophobicity. The suspended bundles are finally metallized with various thicknesses of titanium and gold by a PVD e-beam evaporation process. The achieved NWs have a width ranging from a few nanometers up to 100 nm. The electrical behavior of the achieved 60 and 80 nm width metallic NWs is shown to be Ohmic and their intrinsic resistance is estimated according to different geometrical models of the NW section area. For the 80 nm width NWs, a resistance of about few ohms is established, opening exploration fields for applications in microelectronics.


Assuntos
DNA/química , Condutividade Elétrica , Metais/química , Nanofios/química , DNA/ultraestrutura , Eletrodos , Ouro/química , Microscopia de Força Atômica , Nanofios/ultraestrutura , Titânio/química
7.
Nanotechnology ; 20(14): 145705, 2009 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-19420535

RESUMO

We report the modification and characterization of single-walled carbon nanotubes (SWCNTs) in view of molecular sensing applications. We found that ultrasonicated SWCNTs present sticking properties that make them adhere on electrode surfaces. This allows excellent characterization of SWCNTs by cyclic voltammetry (CV) before and after chemical functionalization with diazonium salts bearing electroactive groups. Bare SWCNTs presented distinct invariant shapes in CV, used as control curves, in comparison with functionalized SWCNTs for which specific signatures corresponding to the presence of grafted molecules were identified. According to the electronic substituents in the para position of the diazonium salts, divergent behaviours were observed for the grafting reactions. Diazonium salts having electrowithdrawing groups could be grafted without electrochemical induction whereas those bearing electron donating groups required a cathodic potential to generate the formation of the radical species.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA