Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Tumour Biol ; 44(1): 249-267, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36502357

RESUMO

BACKGROUND: Non-small cell lung cancer (NSCLC) is a leading cause of cancer deaths. Current companion diagnostics use driver mutation sequencing to select patients for molecularly targeted agents (MTA), even though most patients lack actionable mutations. These diagnostics utilize static biomarkers, ignoring real-time tumor cell biology. OBJECTIVE: Trametinib is FDA-approved in combination with dabrafenib for BRAF V600E-positive NSCLC, however, it has plausible utility beyond these patients. We sought to identify novel biomarkers for maximizing trametinib application. METHODS: Trametinib responses were evaluated in 12 EGFR/BRAF wild-type (WT) NSCLC cell lines with diverse RAS mutational status. We identified three response categories by colony assay. Trametinib-induced molecular dynamics were studied using immunoassays and apoptosis/necrosis assays, to identify predictive response biomarkers. RESULTS: p27 accumulation and cyclin D1 downregulation suggested universal cell cycle arrest with trametinib. However, 4 cell lines showed PARP cleavage and 8 showed increased phospho-4E-BP1, suggesting varied cellular outcomes from apoptosis, necrosis, senescence to autophagy. Cleaved PARP, phospho-4E-BP1 and phospho-AKT expression can predict these outcomes. CONCLUSIONS: Trametinib monotherapy outcome may depend upon cellular context more than oncogenic mutation status. In BRAF WT NSCLC, trametinib may be best suited for combination therapy and dynamic biomarkers could select combinations and predict responses.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Proteínas Proto-Oncogênicas B-raf/genética , Protocolos de Quimioterapia Combinada Antineoplásica , Necrose
2.
Artigo em Inglês | MEDLINE | ID: mdl-34846938

RESUMO

Background: Cetuximab, an epidermal growth factor receptor (EGFR)-targeting antibody, remains the only Food and Drug Administration-approved targeted therapy for squamous cell carcinoma (SCC) of head and neck/esophagus. However, in clinical trials, cetuximab only benefited a subset of patients and frequently caused toxicity. Predicting which patients respond to cetuximab remains unsolved. The authors sought to identify predictive biomarkers in EGFR signaling and autophagy pathways, which may be impacted by cetuximab under certain treatment conditions. Methods: In vitro responses of SCC cell lines to cetuximab under various nutrient conditions were assessed by WST-8 growth assay. Functional profiles of several EGFR signaling biomarkers were investigated by Luminex-based assays and corroborated with immunoblots. Autophagy markers were analyzed with immunoblots. Results: In vitro growth response assays identified cetuximab responder and nonresponder cell lines. Optimal growth conditions and growth factors enhanced responses, and even reversed nonresponsiveness in some cell lines. Strong correlation was found between response in growth assays (reference assay) and dynamic changes in p-Erk1/2 and LC3-II (index assays). Conclusions: This study indicates that nutrient modification may enhance cetuximab response in SCC patients. Biomarker results strengthen the hypothesis that dynamic biomarkers can be used to predict patient response to cetuximab. Future studies are warranted to test in more complex samples including patient-derived tumor tissues.

3.
J Biol Chem ; 277(22): 19847-54, 2002 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-11909860

RESUMO

Proteins encoded by the adenovirus E1A gene regulate both cellular and viral genes to mediate effects on cell cycle, differentiation, and cell growth control. We have identified the mouse mammary tumor virus (MMTV) promoter as a target of E1A action and investigated the role nucleoprotein structure plays in its response to E1A. Both 12 and 13 S forms target the MMTV promoter when it has a disorganized and accessible chromatin configuration. However, whereas the 13 S form is stimulatory, the 12 S form is repressive. When the MMTV promoter adopts an organized and repressed chromatin structure, it is targeted only by the 13 S form, which stimulates it. Although evidence indicates that E1A interacts with the SWI/SNF remodeling complex, E1A had no effect on chromatin remodeling at the MMTV promoter in organized chromatin. Analysis of E1A mutants showed that stimulation of the MMTV promoter is mediated solely through conserved region 3 and does not require interaction with Rb, p300/CBP-associated factor, or CBP/p300. Imaging analysis showed that E1A colocalizes with MMTV sequences in vivo, suggesting that it functions directly at the promoter. These results indicate that E1A stimulates the MMTV promoter in a fashion independent of chromatin conformation and through a direct mechanism involving interaction with the basal transcription machinery.


Assuntos
Proteínas E1A de Adenovirus/metabolismo , Proteínas E1A de Adenovirus/fisiologia , Vírus do Tumor Mamário do Camundongo/genética , Regiões Promotoras Genéticas , Animais , Linhagem Celular , Núcleo Celular/metabolismo , Cromatina/metabolismo , Técnica Indireta de Fluorescência para Anticorpo , Vetores Genéticos , Luciferases/metabolismo , Camundongos , Microscopia de Fluorescência , Mutação , Plasmídeos/metabolismo , Ligação Proteica , Isoformas de Proteínas , RNA/metabolismo , Transcrição Gênica , Transfecção , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA